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ABSTRACT 

Organic sjmthesis is a highly-developed, useful, and interdisciplinary branch of 

natural science. Modem synthetic chemistry has provided complex molecules and new 

materials with unique properties. This study focused on creating new methodology, or new 

routes, to achieve a biologically active, natural product synthesis. 

A new methodology to generate 2,4-diacylfuran compounds has been developed and 

discussed. The synthesis of two natural 2,4-diacylfuran compounds, hibiscone C, and 

halenaquinone, has been achieved. The new route to hibiscone C features an efficient ring 

formation and rearrangement. Halenaquinone analogues have been synthesized by Michael 

addition, annulation, and palladium catalyzed reaction. The new route provides a new lead in 

the discovery of anticancer reagents like halenaquinone. 

A first approach towards building a BCD ring system for aquayamycin via 

intramolecular anion reaction is described. The approach could eventually provide a route to 

achieve the total synthesis of aquayamycin, a new antibiotic which might eventually be used 

to treat cancer. 
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GENERAL INTRODUCTION 

Organic synthesis is a natural science that is highly developed and useful. Modem 

synthesis chemistry has provided complex molecules and new materials with unique 

properties. A large number of such synthetic compounds have already contributed to modem 

medicine. In order to enable organic synthesis to be more broadly used in large quantity 

production, new synthetic routes need to be developed and reHned for efficiency, 

economical, and environmental concerns. This study focuses on creating new 

methodologies, or new routes, to achieve biologically active natural product synthesis. 

Two research studies are described. One is the synthesis of luranone natural 

compounds. In this study, a new route has been developed to generate 2,4-diacylfuran 

skeletons, and was used to synthesize hibiscone C and halenaquinone analogues. 

The second study focused on building an ABC ring system in aquayamycin, one of 

the biologically active quinones with a unique stmcture, by intramolecular anion reaction. 

This methodology could potentially enable the first total synthesis of aquayamycin. 

Dissertation Organization 

This dissertation is comprised of four publishable articles in different refereed 

journals. Therefore, the numbering scheme adopted for the compounds and the references 

are independent for each paper. A general summary follows the fourth paper. The first 

author for each paper is the major professor who also is the correspondent for publication. 

The second author is myself, the doctoral candidate who carried out the research under the 

guidance of the major professor. 
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CHAPTER 1. FURAN SYNTHESIS VU A 4 +1 RING • BUILDING STRATEGY-

AN APPROACH TO 2,4-DIACYLFURANS 

A paper, a portion of which was published in Synlett 

George A. Kraus and Zhiwen Wan 

Introduction 

Furan, a five-member heterocyclic compound, was first discovered by Scheele in 

1780, by dry distillation of mucic acid, now known as furan-2-carboxylic acid. Furan itself 

has also been called tetrophenol.' Furan derivatives were commercially insignificant until 

about 1920. The commercial importance of fiiran gained signi^cance due to its role as a 

precursor of the very widely used solvent tetrahydrofuran. Now fiiran is manufactured by the 

gas phase decarbonylation of furan-2-carbaldehyde (furfiiral), which is obtained from 

vegetable waste.^ 

Furan 

The fiiran ring system is found in many naturally-occurring compounds. Several 

reviews have listed the natural fiiran compounds.^ Most of the naturally-occurring furan 

compounds are terpenes. In the past few decades, substitution fiiran ring synthesis has 

attracted much interest because of the biologic activity of naturally-occurring fiirans. 

Dunlop'* reviewed the classic syntheses of fiirans. Russian researchers published a survey of 

methods for preparing ^-substituted fiirans in 1969.^ Dean^, and Donnelly and Meegan^ 

reviewed the synthesis of fiurans. Friedrichsen® reviewed the literature from 1984 to 1995. In 

1994, Allen' provided a detailed review of fiiranosesquiterpene synthesis. 

Since 1996, many new methodologies for fiiran synthesis have been reported. 

Several of these new furan syntheses involve organometallic chemistry. Pirrug'° described a 

new route to fiirans by a rhodium reagent catalyzed reaction of diazo-compounds and alkynes 
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(Equation 1). Chromium compounds have been used by Rudler (Equation 2)," and Hemdon 

(Equation 3)'' to react with alkynes to generate fiirans. Other routes to fiirans, which make 

use of transition metallic coupling and cyclization, have been reported by Narasaka 

(Equation 4),'^ Gabriele (Equation 5),''* and Cacchi (Equation 6).'^ Mikami,'^ Asouti'^ and 

Sha have described a photo-rearrangement of enones to generate fiirans (Equation 7). 

O o 

^2 III  QK_/nA/»\ .  
III 

IPh—==—Ph PhMeN^^°\  
Cr(C0)5=\ ^ /7 (2) 

NMePh 2. Py, heat /\ 
Rg Ph Ph 

Cr(C0)5 

Me' OMe Me 

1 Br OMe 
Rg I [ReCI(N2)(PMe2Ph)4]^ \J[ 

I DMF. heat 
"2 Ph R, R-

R Pdl2. Kl 

R2 
a 

r»./x, ru\i-r..3,4Ho.^ ^ X (g) 

° K,C03 ' ^ " 
"2 

benzene 
"2 (7) 

TMSOTf, EtgN 
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Recently, a new group of natural fiirans has been isolated with a 2,4-diacylfuran 

skeleton, such as the virindin family (1),'' hibiscone C (2),"° halenaquinone (3),"' and 

pterophyllin (4).^ Their biological activities have attracted many chemists to synthesize 

them. In this study, we developed a direct route to 2,4-diacylfurans present in this group of 

natural fiirans. 

Me 
Me 

3 4 

O 

2,4-Diacylfiiran 

The strategy to form fiirans is illustrated below (Scheme 1). It begins with a Michael 

addition reaction of enolate 6 to a-acyl alkenones 5. The resulting enolate 7 displaces one of 

the leaving groups to form dihydrofiiran intermediate 8. Base elimination generates the 

fiiranone. 
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O O OLi 

-V- • 
nr "-G LG LG J 

Base 

Scheme 1 

The reaction of an enone with an enoiate unit to generate furans was described by 

Datta (Equation 8)^ in 1989. In his methodology, p,p-bis(methylthi0)-(x,p-unsaturated 

ketones react with ethyl bromoacetate in the presence of a base to give 3-(methylthio)furans 

via an oxirane intermediate. 

SMe 
SMe 

(8) 

In a similar sequence, an enone with a donor group in the ^-position reacted with 

sulfonium ylides, generating 3,4-disubstituted furans (Equation 9)."'* The epoxidation of 

mono-protected 1,3-dicarbonyl compounds, followed by pyrolysis, generates furans 

(Equation 10).^ Similar Michael-reaction sequences have also been used to form 

dihydrofurans by Aral (Equation 11)"® and Arnold (Equation 12)."' Other similar tandem 

reactions to generate furans, such as a carbene reaction (Equation 13) and a radical reaction 

(Equation 14)^ are shown as follows. 
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•» 
XRg 

MeaSsCHg 

X x=o.s  '  p ' °  ' ' '  
Ri^^o 

COgEt COgEt 

O OMe o—J OMe „ \<J< 
H i  — "  i Z  I  f b  ( 1 0 )  

O 

,r X JL ^EWG Base 
^ ph<^ — 

EWG = CN, 
n = 2.1 COPh. SOgPh 

COaEt OHC^^CHO 
' K2CO3, DMF 
.ouafci 

Br-< . T 
COsEt COzEt (12) 

R 7\ 
EtOaC COgEt 

-A«.a ,  
Rh(OAc)a . .. . 

OMe 

OOgEt 

J . ^ or 
^COaEt 

Results and Discussion 

To achieve the synthesis of 2,4-diacylfurans, we used a dichloroacetate enolate as a 

Michael donor and enediones as Michael acceptors (Equation IS). The results are shown in 

Table 1. In the beginning of this research, we used one equivalent of IDA and one 

equivalent of dichloroacetate, and found a great quantity of starting material remained with 

low yields of products (with the exception of cases 13 and 14). In subsequent reactions, 

when we used two equivalents of LDA and two equivalents of dichloroacetate, and let the 

reactions warm to room temperature, we obtained 2,4-diacylfiirans directly. 
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LDA, CHCI2COX 

THF 

COX 

A B 

Table 1. Synthesis of Bicyclic Furans from Cyclic Enediones (Equation 15) 

A n Ri R2 R3 X B % yield 

10 0 H H H OEt 25 50 

11 1 H H H OEt 26 70 

12 I H H Me OEt 27 86 

13 1 /-Fr H H OEt 28 63 

14 1 H Me H OEt 29 30 

15 1 i-Pr CH2CH2C02Et H OEt 0 

16 1 H Me, Me H OEt 0 

17 1 H t-Bu H OEt 0 

18 1 H Me, CH2CH2C02Et H OEt 0 

19 1 H H, CH2CH2C02Et H OEt 0 

20 1 H H, Allyl H OEt 0 

21 1 t-Pr Allyl H OEt 0 

22 1 H H Me Me 30 70 

23 2 H H H OEt 31 52 

24 2 H H H Me 32 55 

For cases 13 and 14, the intermediates were isolated. To form fiirans, we carried out 

the reaction and then treated the crude intermediates with excess DBU in acetonitriie at room 

temperature for one hour to obtain the products with good yields. Starting materials for these 

reactions were made by Liotta's procedure^^ (Scheme 2). These acylcycloalkenones could 

not be purified and needed to be used freshly due to tautomerization. 
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OH 

H 
1. PhSeBr, Py.. 

HCOOEt R 

Scheme 2 

R 

From the resuhs above, this reaction has been shown to be very sensitive to the steric 

effect of R2. The ketones in cases 12 and 22 exhibited high yields of Michael addition to 

form ftirans. To examine this effect, we used the more stable anion of ethyl -l,3-dithiane-2-

carboxylate to react with the hindered Michael acceptor 18 and isolated the products 

(Scheme 3). The 'H NMR spectrum of the mixtures showed more aldehyde aldol product 33 

than the Michael addition product 34. 

LDA,THF 

EtOgC^^H 

S'^S 
COaEt 
u 

C02wt 

COaEt 

33 
3 

34 
1 

Scheme 3 

Acyclic keto ester C, a good Michael acceptor, also reacted well under the same 

reaction condition used for cyclic enediones to generate fiirans (Equation 16). The starting 

materials C were available by a known procedure from Lehnert.^' Table 2 shows the results 

of this reaction. When compared to cyclic analogues, the acyclic keto esters gave the belter 

results. 
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Me 

O 

A 

c c 0 

Etogc^^y^ 

H THF 
^ Me ^ • L P (16) 

Table 2. Synthesis of 2,4-Diacylfurans from Enedicarbonyl Compounds (Equation 16) 

c R X D % yield 

35 Me OEt 39 68 

36 Me Me 40 62 

37 Ph OEt 41 75 

38 Ph Me 42 57 

Similar products were also reported by Taylor^" in 1989 via a multistep procedure 

(Scheme 4). From the results shown in Table 2, both ethyl dichloroacetate and 

dichloroacetone were used to generate anion under low temperature to form fiirans. 

However, a,a-dichloroacetophenone resulted in complex products. 

Ar II O 

O Me 

b 

M COaEt 
^/^COgEt 37% total yield 

Scheme 4 

In order to better understand the course of this reaction, we tried the reaction shown 

in Scheme S. One equivalent of the lithium enolate of ethyl dichloroacetate was used to react 

with keto ester 37 at -78°C. The reaction was quenched at the same temperature after one 

hour with acetic acid in dichloromethane. The crude product showed no peak between 3 ppm 

and 4 ppm in 'H NMR spectrum. Several singlet peaks have been found between 4.60 ppm 

and 4.69 ppm, which were integrated to approximately one proton. 
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OLi 

Me 

COaEt 

43 

Me Me 

DBU EtOoC' 

45 

Scheme 5 

Me02C^^^0N^^^ Me 

M 
/Vh COgEt 

1 ^ ^ NMR{5) 4.48 

From references and experiments, we found that for dihydrofuran 46," the proton on 

carbon-4 was approximately 4.5 ppm, and for cyclopropane 47,^'* the proton on carbon-3 was 

approximately 3.5 ppm. We concluded that the intermediate in this reaction was a 

dihydrofuran. This intermediate was treated with DBU to produce fiiran. 

Me 

Me 
" 47 

3.29-3.52 

Conclusion 

Two types of fiiran compounds have been generated. The ready availability of the 

starting materials and the mild reaction conditions employed in the 4+1 cyclization reaction 

make this furan synthesis a useful complement to existing methodology. 

Experiments 

Unless otherwise noted, the materials used in the experiments for this research were 

obtained from commercial suppliers and were used without fiirther purification. THF and 

diethyl ether were distilled from sodium benzophenone ketyl. Benzene, dichloromethane. 
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acetonitrile, toluene, diisopropylamine were distilled from calcium hydride. The reactions 

were conducted in a nitrogen atmosphere and the organic extracts were dried with 

magnesium sulfate. The melting point was determined on a Fisher-Johns apparatus and was 

not corrected. Infrared spectra were obtained on a Perkin-Elmer model 1320 

spectrophotometer and nuclear magnetic resonance spectra were determined on a Nicolet 

Magnetics Corporation NMR-1280 Spectrometer. 

All chemical shifts are reported in 5 relative to tetramethylsilane as an internal 

standard. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd 

(doublet of doublets), dt (doublet of triplets), and m (multiplet). The addition of br indicates 

a broadened pattern. 

The glass apparatus were flame-dried and cooled under the steam of nitrogen. Flash 

column chromatography was conducted using Neutral or Basic Aluminium (Brockmann) 

standard grade (150 mesh) from Aldrich Chemical Company and Silica Gel (EM Science 

Kieselgel 60 (mesh 230-400). Thin layer chromatography was performed using EM Science 

Kieselgel F2S4 prepared plates with a thickness of 0.25 mm. High resolution MS was 

obtained from Kratos Model MS-50 spectrometer and low resolution MS was obtained from 

a Finnegan 4023 Mass spectrometer. 

General procedure for 2,4-diacylfuran syntheses 

N-BuLi (2.5 M, 4 mL, 10 mmol) in hexane was added to diisopropylamine (1.8mL, 

12 nrniol) in THF (30 mL) in a dry flask at -78°C under nitrogen. After warming the 

solution to 0°C, it was stirred for at least 45 minutes, then cooled to -78°C. Ethyl 

dichloroacetate or dichloroacetone (10 mmol) in THF (10 mL) was added dropwise to the 

solution. The solution was stirred at -78°C for 1 hour. The Michael acceptor (5 mmol in 10 

mL THF) was then added and the solution was stirred at -78°C for 3 hours and allowed to 

warm to room temperature. Saturated ammonium chloride (30mL) solution was added and 

the solution was partitioned between ether and water. The ether layer was dried and purified 

by flash column chromatography using a mixmre of hexanes and ethyl acetate. 
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Ethyl l-methyl-4,5>dihydro-6-oxo>cyclopenta[c]furaii-3-carboxylate (25) 
50% yield. 'H NMR (CDCI3,8): 4.36 (q, J = 7 Hz, 2H), 3.07 (t, J = 7 Hz, 2H), 2.94 

(t, J = 7 Hz, 2H), 2.55 (s, 3H), 1.37 (t, J = 7 Hz, 3H). NMR (CDCI3,8): 198.1,158.4, 

154.1, 146.1, 135.8,127.7,61.0,42.95, 19.7, 14.5, 14.0. IR (neat) cm ': 2983,1716, 1617, 

1013. 

Ethyl 4,5,6,7-tetrahydro-7-oxo-3-lsobenzofurancarboxylate (26) 

70% yield. 'H NMR (CDCI3,5): 8.07 (s, IH), 4.40 (q, J = 7 Hz; 2H), 3.02 (t, J = 7 

Hz, 2H), 2.55 (t, J =7 Hz, 2H), 2.12 (m, 2H), 1.40 (t, J = 7 Hz, 3H). '^C NMR (CDCU, 5): 

195.1, 159.5, 145.4, 140.0, 139.5, 123.6,61.4, 35.4, 25.6,22.1, 14.2. IR (neat) cm"': 3150, 

2985, 1721, 1505. MS m/z (CI-NH3): 208. 

Ethyl l-methyl-4,5,6,7-tetrahydro-7-oxo-3-isobenzofurancarboxylate (27) 

86% yield. 'H NMR (CDCI3,5): 4.36 (q, J = 7 Hz, 2H), 2.97(t, J = 7 Hz, 2H), 2.65 

(s, 3H), 2.47 (t, J = 7Hz, 2H), 2.06(m, 2H), 1.38 (t, J=7Hz, 3H). '^C NMR (CDCI3,5); 195.1, 

160.6, 159.0, 136.9, 135.2, 120.1,60.8,39.6,23.4,21.8, 14.4, 14.3. IR (neat) cm '; 2986, 

1716, 1683, 1598, and 1276. 

3«Acetyl-l-methyl-4,5,6,7-tetrahydro-7-oxo-lsobenzofuran (30) 

70% yield. 'H NMR (CDCI3,5); 3.2(t, J = 7 Hz, 2H), 2.5 (t, J = 7 Hz, 2H), 2.67 (s, 

3H), 2.47 (s, 3H), 2.08 (quintet, J = 7 Hz, 2H). '^C NMR (CDCI3, 6): 195.2, 188.0, 159.9, 

145.6, 134.6, 120.6, 39.5,26.9,23.4,22.1, 14.4. IR (neat) cm ': 3325,2955,1693, 1548, 

908. 

Ethyl 4,5,6,7-tetrahydro-8-oxo-cycIohepta[c]furan-3-carboxylate (31) 

52% yield. 'H NMR (CDCI3,8): 4.39 (q, J = 7 Hz, 2H), 3.21 (t, J = 7 Hz, 2H), 2.73(t, 

J = 7 Hz, 2H), 1.9-2.0(m, 4H), 1.4(t, J = 7 Hz, 3H). '^C NMR (CDCI3,8): 197.8, 159.2, 

148.5, 140.8, 132.9, 130.3,61.1,42.6,25.5,23.8,22.1, 14.3. IR (neat) cm ': 3160,2985, 

1712, 1681,1593,1282. 
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3-Acetyl-4,5,6,7-tetrahydro-8-oxo-cyclohepta[c]furaii (32) 

55% yield. 'H NMR (CDCI3,5): 3.24 (t, J = 7 Hz, 2H), 3.71 (t, J = 7 Hz, 2H), 2.49 

(s,3H), 1.80-1.90 (m,4H). NMR (CDCI3,8): 198.1, 189.71, 148.0, 145.2,131.9,130.9, 

43.1, 27.4, 25.6,24.2,22.2. IR (neat) cm'': 3118,2950, 1670, 1574, 1392, 1136. 

Diethyl 3,5-dimethyl-2,4-furandicarboxylate (39) 

68% yield. 'H NMR (CDCI3,8): 4.25-4.41 (m, 4H), 2.62 (s, 3H), 2.53(s, 3H), 1.35-

1.41 (m, 6H). NMR (CDCI3, 5): 163.8, 162.2, 159.5, 139.0, 132.1, 115.9,60.8,60.4, 

14.8, 14.4, 14.3, 11.0. IR (neat) cm"': 2982, 1719,1608, 1077. 

Ethyl 2-acetyl>3, S-dimethyM-furancarboxyiate (40) 

62% yield. 'H NMR (CDCI3. 8): 4.31 (q, J = 7 Hz; 2H), 2.60 (s, 3H), 2.45 (s, 3H), 

2.44(s, 3H), 1.36 (t, J = 7 Hz, 3H). NMR (CDCI3,8): 188.9, 163.8, 161.6,147.2, 131.2, 

116.5,60.4,27.3, 14.9, 14.3, 11.0. IR (neat) cm '; 2981, 1709, 1676, 1592, 1242. MS m/z 

(CI-NH3); 210. 

Diethyl 5-inethyl-3-phenyi-2.4-difurancarboxylate (40) 

75% yield. 'H NMR (CDCI3,8); 7.2-7.4 (m, 5H), 4.17 (q, J = 7 Hz, 2H), 4.06 (q, J = 

7 Hz, 2H), 2.69(s, 3H), 1.10 (t, J = 7 Hz, 3H), 1.01 (t, J = 7 Hz, 3H). '^C NMR (CDCI3) 

ppm: 163.2, 162.0, 158.7, 138.8, 134.6, 131.8, 129.5, 127.9,127.8, 127.3,60.8,60.3, 14.6, 

13.9, 13.7. IR (neat) cm ': 3010,2982, 1721, 1594, 1410, 1254, 1178.1089. MS m/z(CI-

NH3): 320. 

Ethyl 2-acetyl-5-methyl-3-phenyl-4-furancarboxylate (41) 

57% yield. 'H NMR (CDCI3,8): 7.27-7.41 (m, 5H), 4.07 (q, J = 7 Hz, 2H), 2.71 (s, 

3H), 2.08(s, 3H), 1.00 (t, J = 7 Hz, 3H). '^C NMR (CDCI3, 8): 186.8, 163.0,162.2, 146.7, 

134.1,132.1,129.3, 128.2, 127.9,116.4,60.3,27.9, 14.6, 13.6. IR (neat) cm '; 3059, 2982, 

1711, 1673, 1590,1445,1240,1174. 
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General procedure for 13 and 14: 

N-BuLi (2.5 M, 4 mL, 10 mmol) in hexane was added to diisopropylamine (1.8 mL, 

12 mroole) in THF (30 mL) in a dry flask at -78°C under nitrogen. After warming to 0°C, 

the solution was stirred for at least 45 minutes, then cooled to -78°C. A solution of ethyl 

dichloroacetate or dichloroacetone (10 mmol) in THF (10 mL) was added dropwise to this 

solution. The solution was stirred at -78°C for 1 hour. The Michael acceptor (10 mmol in 20 

mL THF) was then added, and the solution was stirred at -78°C for 3 hours and allowed to 

warm to room temperature. Saturated ammonium chloride solution (30 mL) was added and 

then the solution was partitioned between ether and water. The ether layer was dried and the 

solvent was removed under reduced pressure. The crude product was dissolved in 

acetonitrile (30 mL). To this solution DBU (4.5 mL, 30 mmol) was added and stirred for 1 

hour. Saturated ammonium chloride solution (30 mL) was added and the solution was 

partitioned between ether and water. The ether layer was dried and purified by flash coluimi 

chromatography using a mixmre of hexanes and ethyl acetate. 

Ethyl S-isopropyM, 5,6,7-tetrahydro-7>oxo-3-isobenzofurancarboxylate (28) 

63% yield. 'H NMR (CDCI3,6); 8.07 (s, IH), 4.40 (q, J = 7 Hz; 2H), 3.2-3.3(m, IH); 

2.55-2.65 (m, 2H), 2.25-2.35 (m, IH), 1.9-2.1 (m, IH), 1.7-1.8(m, IH), 1.41(t, J = 7 Hz; 3H), 

1.0 (d, J = 7 Hz, 6H). '^C NMR (CDCI3,5): 194.9, 158.9, 146.L 140.0, 134.2,125.7, 61.2, 

43.1,43.2,31.7, 24.9, 19.6, 19.5, 14.4. IR (neat) cm"': 3175, 2987, 1715, 1235. 

Ethyl 4-methyl-4,5,6,7-tetrahydro-7-oxo>3-isobenzofurancarboxylate (29) 

30% yield. 'H NMR (CDCI3, 8): 8.01 (s, IH); 4.3-4.5 (m, 2H); 3.5-3.6 (m, IH); 1.9-

2.7 (m, 4H); 1.38 (t, J = 7 Hz, 3H); I.33(d, J = 7 Hz, 3H). '^C NMR (CDCI3, 8): 194.2, 

158.6, 146.4, 139.8, 138.9, 124.7,61.2, 34.4, 29.9,25.4, 18.8, 14.3. IR (neat) cm"': 3143, 

2990, 1720,1278. 
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CHAPTER 2. TOTAL SYNTHESIS OF HIBISCONE C 

A paper, a portion of which was accepted by Synlett 

George A. Kraus and Zhiwen Wan 

Introduction 

Hibiscone C was originally isolated as gmelofuran from Gmelina aborea in 1978.' 

Because it also is found in Hibiscus sp., the nation tree of Jamaica, the name was changed to 

hibiscone C." Hibiscone C contains a fiiran ring as part of a bicyclo [4.4.0] decane system. 

The key architectural feature of this family, namely the trisubstituted fiiran ring skeleton, also 

appears as a central structural unit in the viridin family^ and halenaquinone family."^ 

Hibiscone C (Gmelofuran) (1) 

Virindin Halenaquinone 

The only total synthesis of hibiscone C was reported by Smith^ in 1984. He 

developed an intramolacular alkyne-enone photocycloaddition to form a cyclobutene, 

followed by ozonolysis and acidic cyclization to provide the fiiran. The retrosynthetic 

analysis is shown in Scheme 1. 
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Scheme 1 

His synthesis started with the alkylation of 4, followed by LAH reduction and acid 

work-up to give alkyne 3 in a total yield of 60% (Scheme 2). Irradiation of 2 in bexane under 

argon for 24 hours gave 2 in 60% yield. Ozonolysis of 2, followed by acidic cyclization, led 

to fiiran 5 in 50% yield. 

EtO. .0 1.LDA, 
I(CH2)3CCH 

2. LAH; 
HCl/HgO 

60% 

1.03; PPh3 

TTF 
50% 

Scheme 2 

To generate the second carbonyl, Smith^ first tried to oxidize 5 with Collins reagent, 

giving 6 in 20% yield. He then used NBS in water to oxidize 5 and isolated alcohol 7 in 60% 

yield. Oxidation of 7 with Collins reagent afforded 6 in 40% yield. Monoprotected 8 was 

used to make hibiscone C (Scheme 3). 
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O O 

Collins ox. 

O PTSA 
40% 

Ethylene glyco 

8 
LDA, Mel; 
HCI 5 Collins ox. 

OH 
' r 64% 

0* 

43% 

NBS 

Hibiscone C 

O 

Scheme 3 

The route discussed above has a novel furan synthesis. However, the last several 

steps proceed in low yield and are not efficient. 

As a part of a study to make natural 2,4-diacylfurans, we wanted to use the 

methodology we developed^ to prepare hibiscone C. The retrosynthetic analysis is shown in 

Scheme 4. Hibiscone C was planed to be generated from 9 via Dieckmann condensation. 

Reaction of the enolate of ethyl dichloroacetate with 10 is expected to provide furan 9. 

Formyl cyclohexenone 10 could be obtained from 11 by literature procedures. 

We reduced 4-methoxycinnamic acid (11) using lithium in liquid ammonia. The 

reduction product was treated with PTSA to afford cyclohexenone 12 in 85% yield.^ 

Compound 12 was treated with isopropyl magnesium bromide, CuBr and four equivalents of 

TMSCl to afford 13 in 80% yield.® Reaction of the enolate of 13 with ethyl formate, 

followed by Liotta's procedure', gave 10 in 75% yield (Scheme 5). However, the reaction of 

the enolate of ethyl dichloroacetate with 10 did not give furan 9. The reason for this failure 

could be attributed to steric hindrance and the high acidity of the allylic methylene proton. 

Results and Discussion 
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MsOgC. EtOgC 

MeOaC' MeOaC 

Scheme 4 

OMe 

HOaC, 

12 

MeOgC 

i.U NHg: 

2. MeOH. H* 

OMe 

MeOjO 

IsopropylMgBr, 
TMSCI, CuBr^ 

80% 

MeOaC' 

1.LDA, HCOaEt 

2. Pyridine, PhSeBn 
HgOa 

75% 

CHO 

Scheme S 

MeOgC^^^^zC 

LiCCIaCOaEt 

w 

At this point, we tried to use furan 14® to prepare 1 from keto ester 14 by reaction at 

the allylic methylene group of 14(Scheme 6). There are two ways to achieve this strategy. 

One is to generate a radical at C-7 and react with acrylate to form 9, Another strategy was to 

generate an anion to form 9. 
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O 

O 

14 

O 

Scheme 6 

When 14 was brominated with NBS and dibenzoyl peroxide, 16 was obtained as the 

only product (Scheme 7). Because of the undesired regioselectivity of bromination, we 

evaluated the anion strategy. The ketone carbonyl in 14 was protected as ketal. Ketal 17 

was treated with LDA followed by ethyl acrylate. However, this sequence did not give 

diester 18. 

We next decided to focus on a different approach. The retrosynthetic analysis is 

shown in Scheme 8. We envisioned that the fiiran ring in hibiscone C could be formed from 

a precursor such as 19. The new chemistry would involve a tandem Wittig reaction from 

enol ester 20, which would be prepared from 21by alkylation. 

Peroxide 
O 

14 16 no 15 

Protection 

MeOzC 

17 18 

Scheme 7 
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Scheme 8 

Starting with conmiercially available 5-isopropyl-l,3-cyclohexanedione (22), we 

prepared 21 in 92% yield by Smith's procedure'® (Scheme 9). Because of the bulky 

isopropyl group, Michael addition of 21with acrylate failed. However, the alkylations of 21 

with LDA and allyl bromide, allyl iodide and 2-methyI allyl iodide were successful. 

Alkylation of 21 with ethyl 2-bromomethylacrylate followed by hydrogenation provided 23 

in 95 % yield. Treatment of 23 with LiOH in water provided an acid. The reaction of the 

acid with thionyl chloride did not give 20. Compound 24 was the only stable product. 

We then decided to generate 19 from 25. The retrosynthetic analysis is shown in 

Scheme 10. Compound 25 might be obtained from 21 via a Michael addition reaction. 

COgEt 
1.LDA, 

2.  Hz,  Pd/C 

95% 

O 

UOH 
^O 

J 
J 2.SOCI2 

no 20 

Scheme 9 
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Scheme 10 

The reaction of 21 with LDA followed by methyl vinyl ketone led to recovered 

starting material. Because the alkylation had worked, we looked for an alkylating reagent 

that was an MVK equivalent. We used the procedure reported by Hamiton" to prepare 26 in 

80% yield (Scheme 11). With 26 in hand, we evaluated the annulation reaction. KH in 

mineral oil was added to a solution of 26 in rerf-BuOH. The solution was stirred overnight at 

room temperature to generate 27 in 85% yield. 

LDA. MVK 
—— 

LDA, 80% 

OTMS 

KO-t-Bu, t-BuOH 

85% 

Scheme 11 
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The last key step was the generation of a heteroatom group on a-carbon of the enone 

19. There were two ways to achieve this plan. One was to put the heteroatom group on the 

methyl vinyl ketone equivalent then try the alkylation and annulation to generate 19. 

Another route was to start with 27 to generate the heteroatom group. With 27 in hand, we 

were ready to attempt the second procedure. At first, we tried the oxidation reaction 

developed by No'^ reported. He used selenium dioxide to convert dienone 28 into fiiran 29 

in good yield. We predicted that 27 could give 30 via a retro-Diels-Alder reaction. The 

reaction of 30 with selenium dioxide could generate fiiran 31 by selenium dioxide. 

Unfortunately, the reaction did not give 31 (Scheme 12). 

At this point, we reconsidered our approach to hibiscone C from 27. The precursor to 

the fiiran in hibiscone C could be obtained from 31 by selective oxidation of the remote 

double bond. Reduction of 27 followed by acid catalyzed rearrangement might produce 

31(Scheme 13). 

' 28 

S6O2 
Xylene 

W * 
heat 

0 

Scheme 12 
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OH 

Scheme 13 

Treatment of 27 with lithium aluminum hydride followed by acidification and 

rearrangement gave 33 in 92% yield. Then we tried the selective oxidations using MCPBA 

epoxidation or osmium tetraoxide dihydroxylation (Scheme 14). MCPBA epoxidation 

generated 34 in 87% yield. The dihydroxylation reaction generated triol 35 in 80% yield. 

We did not study the stereoselectivity of this reaction. 

OH 

MCPBA 

87% 
OH 

LAH;H 
OH 

OH 

80% 

.OH 

Scheme 14 

At the same time, we reacted 27 with 1 equivalent of LDA followed by Mel to 

generate 36 as the only product based oh the proton NMR spectrum in 95% yield (Scheme 

15). However, if this reaction was quenched in 3 hours, a mixture of 36 and a by-product 

was obtained. Compound 36 did not need further purification for the next step. The 

reduction of 36 with LAH followed by acid catalyzed rearrangement gave 32 in almost 
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quantitative yield. We then used the dihydroxyiation procedure to obtain triol 37 in 80% 

yield. We needed two equivalents of the Swem reagentan oxidant to generate two carbonyl 

groups. We treated the triol 37 with 2.5-3 equivalents of Swem oxidant and obtained 

hibiscone C in 85 % yield. 

Conclusion 

The synthesis of hibicone C was achieved in seven steps. The key steps were the 

reduction and rearrangement of dioxenone 36 and the Swem oxidation to generate the fiiran. 

This strategy could be applicable to the synthesis of other furans. 

Unless otherwise noted, the materials used in the experiments for this research were 

obtained from commercial suppliers and were used without further purification. THF and 

diethyl ether were distilled from sodium benzophenone ketyl. Benzene, dichloromethane, 

acetonitrile, toluene, diisopropylamine were distilled from calcium hydride. The reactions 

were conducted in a nitrogen atmosphere and the organic extracts were dried with 

magnesium sulfate. The melting point was determined on a Fisher-Johns apparatus and was 

not corrected. Infrared spectra were obtained on a Perkin-Elmer model 1320 

overnight 
95% 

P100% 

(C0CI)2, 
DMSO; 

Hibtscone C (1) 

Scheme 15 

Experiments 
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spectrophotometer and nuclear magnetic resonance spectra were determined on a Nicolet 

Magnetics Corporation NMR-1280 Spectrometer. 

All chemical shifts are reported in 5 relative to tetramethylsilane as an internal 

standard. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd 

(doublet of doublets), dt (doublet of triplets), and m (multiplet). The addition of br indicates 

a broadened pattern. 

The glass apparatus were flame-dried and cooled under the steam of nitrogen. Flash 

column chromatography was conducted using Neutral or Basic Aluminium (Brockmann) 

standard grade (150 mesh) from Aldrich Chemical Company and Silica Gel (EM Science 

Kieselgel 60 (mesh 230-400). Thin layer chromatography was performed using EM Science 

Kieselgel F254 prepared plates with a thicicness of 0.25 mm. High resolution MS was 

obtained from Kratos Model MS-50 spectrometer and low resolution MS was obtained from 

a Finnegan 4023 Mass spectrometer. 

4,6,7,8-Tetrahydro>7-isopropyl-5H-l, 3>benzodioxin»5-one (21) 

A solution of 5-isopropyl-cyclohexanedione (3.1 g, 20 mmol) in 50mL of methylene 

chloride was added dropwise at room temperature over 5 hours to a solution of 1,3,5-trioxane 

(12.8 g, 12 mmol) and boron trifluoride etherate (7.38 mL, 60 mmol) in dry methylene 

chloride IL at room temperature. After addition, the solution was stirred further for 36 

hours. The reaction was quenched slowly with saturated sodium bicarbonate solution (SO 

mL). The organic layer was separated and aqueous phase was extracted with methylene 

chloride. The combined organic layers were washed with brine, dried with magnesium 

sulfate, and concentrated in a vacuum. The residue was purified by flash chromatography 

(eluting with 5:1 hexane/ethyl acetate) to give 3.6g of light yellow oil 21 (92% yield). 'H 

NMR (CDCI3,5): 5.21(d, J = 6 Hz, IH), 5.06 (d, J = 6 Hz, IH), 4.3-4.5 (m, 2H), 1.7-2.5 (m, 

5H), 1.6 (Septet, J = 7 Hz, IH), 0.93(d, J = 7 Hz, 6H). '^C NMR (CDCI3,5): 196.9, 170.5, 

111.5,91.8,63.1,40.8,39.8,32.1,31.7,19.8, 19.7. IR cm ': 2985,1691, 1310. MS m/z: 

196. 
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4,6,7,8-Tetrahydro-7-isopropyl-6- (3-oxo-l- butyl)-5H-l^-benzodioxin-5-one (26) 
A solution of n-BuLi (4.5 mL of 2.5M solution in hexane) was added to 

diisopropylamine (1.8 mL, 12 mmol) in THF (30 mL) at 0°C. The resulting solution was 

stined for 45 minutes. Then the mixture was cooled to -78°C and 21 (1.9g, 10 nunol) in 

lOmL of THF was added over 10 min. The resulting solution was stirred for I hour. At the 

same time, fresh MVK (2.5 mL, 30nunol) in 30 mL methylene chloride was cooled to -78°C 

and to this solution, freshly distilled TMSI (4.3 mL, 30 mmol) was added and stined for 2 

hours at the same temperature. The resulting solution was transferred to the 21 anion 

solution. The resulting mixture was stirred for another 4 hours and then quenched with 

water. The organic layer was separated and washed with dilute HCl (10 mL), saturated 

sodium bicarbonate (10 mL) and brine (10 mL), and dried with magnesium sulfate. 

Removing the solvent gave a crude product, which was purified by flash column 

chromatography (5:1 hexanes; ethyl acetate), giving 2. Ig of 26 as light yellow oil (80% 

yield). 'H NMR (CDCI3, 6): 5.10 (dd, J = 6 Hz; 2 Hz, 2H), 4.36 (m, 2H), 2.4-2.5 (m, 3H), 

2.2-2.3 (m, 2H), 2.10 (s, 3H), 1.9-2.05 (m, IH), 1.7-1.85(m, 3H), 0.92 (d, J = 7 Hz, 3H), 0.85 

(d, J = 7Hz, 3H). '^C NMR (CDCI3,8): 208.7, 198.2, 168.5, 110.6,91.5,62.8,47.3,42.3, 

40.5, 30.1, 28.3, 16.9,22.1,20.9, 17.9. 

5,6,7,8-tetrahydro-6-isopropyU (lH)-naphtho[2,l-d][l»3]dioxin-8-one(27) 

A solution of KH in mineral oil (30%, 0.5 mL) was added to 26 (1.33g, 5 mmol) in t-

BuOH (15 mL) under nitrogen. The resulting solution was stirred overnight, then quenched 

with ammonium chloride solution (10 mL). The product was extracted with ethyl acetate (20 

mL x 3), then washed with brine (20 mL) and dried with magnesium sulfate. The solvent 

was removed under vacuum, followed by flash column chromatography purification, which 

generated l.Og of 27 (85% yield) as a light yellow oil. 'H NMR (CDCI3,5): 5.45 (s, IH), 

5.20 (d, J = 6 Hz, IH), 5.00(d, J = 6 Hz, IH), 4.3-4.4 (m, 2H), 2.0-2.6 (m, 7H), 1.5-L7 (m, 

2H), 0.96(d, J = 7 Hz, 3H), 0.85 (d, J = 7 Hz, 3H). '^C NMR (CDCI3,5): 199.0,160.3, 

157.8,116.6, 106.6,90.9,63.8,43.5, 37.9,37.2,26.8, 26.2,26.1,20.9,14.5. MS m/z (CI-

NH3): 248. 
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7-Methyl-5,6,7,8-tetrahydro-6-lsopropyI- (lH)>naphtho[24*d][l>3]dioxin-8-one (36) 

A solution of 27 (1.25 g, 5 mmol) in 10 mL of THF was added to LDA (6 nimol, 

from n-BuLi and diisopropylamine) in 50 mL THF solution at —78°C under nitrogen. The 

resulting solution was stirred for 1 hour and methyl iodide (0.8 mL, 6 nmiol) was added. The 

resulting solution was wanned overnight to room temperature. Water (10 mL) was added to 

quench the reaction. The product was exuracted with ethyl acetate (30 mL x 3), washed with 

brine and dried with magnesium sulfate. Removal of the solvent generated 1.3g oil 36 which 

was pure enough for the next step. 'H NMR (CDCI3,5): 5.35 (s, IH), 5.20 (d, J = 6 Hz, IH), 

5.01 (d, J = 6 Hz, IH), 4.30-4.42 (m, 2H), 1.95-2.6 (m, 6H), 1.6-1.8 (m, 2H), 1.17 (d, J = 7 

Hz, 3H), 0.96(d, J = 7 Hz, 3H), 0.85 (d, J = 7 Hz, 3H). NMR (CDCI3,5): 202.5, 160.2, 

156.8, 115.2, 106.6, 90.8, 63.8,43.1, 39.5, 32.7, 32.5,26.9,26.0, 20.8, 16.4, 14.3. 

l-Hydroxymethy-4-isopropyl>6-methy-2,3,4,5,6,10-hexahydro-2-oxo>naphthalene (32). 

A solution of 36 (0.52 g, 2 mmol) in THF (10 mL) was added to the suspension of 

LAH (20 mg, 5.2 mmol) in 30mL THF at room temperature under nitrogen. The solution 

was stirred at 0°C for 3 hours, and then water (1 mL) was added to quench the reaction. The 

solution was acidified with HCl (6N) to pH 1 and stirred for another hour. The product was 

extracted with ethyl acetate (30 mLx3), washed with saturated sodium bicarbonate (20 mL) 

and brine (40 mL), and dried with magnesium sulfate. After removal of the solvent, a 0.46g 

of pure yellow oil product 32 was obtained. 'H NMR (CDCI3, 8): 6.58(d, J = 6 Hz, IH), 6.31 

(dd, J = 3 Hz; 6Hz, IH), 4.42 (dd, J = 9 Hz; 2Hz, 2H), 2.7 (m, IH), 2.4-2.6 (m, 3H), 2.0-2.2 

(m, 2H,OH), 1.91 (m, IH), 1.7-1.8 (m, IH), 1.4-1.5 (m, IH), 1.11 (d,J = 7Hz, 3H), 0.94 (d, 

J = 7 Hz, 3H), 0.80 (d, J = 7 Hz, 3H). NMR (CDCI3,5): 202.1, 154.2, 145.4, 130.9, 

123.1,56.3,44.2, 37.0,33.5, 31.9,29.6, 26.1,20.8, 18.5, 15.0. IR (neat) cm"': 3396, 1666, 

1558, 1472, 1012. MS m/z (CI-NH3): 234. HRMS: 234.16198 (cal. 234.16226). 

l-Hydroxyinethy-7,8-dihydroxy-4-isopropyl>6-methy-2^,4^,6,7,840-decahydro-2-oxo-

naphthalene (37) 

OSO4 m t-BuOH (5 mg/mL, 0.2 mL), and after 5 minutes, 4-methylmorpholine N-

oxide (NMO, 60 mg, 0.55 mmol) was added to the solution of 32 (0.12 g, 0.5 mmol) in 

acetone (5 mL) with water (1 mL). Then sodium thiosulfate (10%, 5 mL) was added to 
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quench the reaction after 18 hours. The product was extracted with ethyl acetate (15 mL x 

3), filtered by celite, then washed with brine and dried with magnesium sulfate. After 

removal of the solvent, the product was obtained and purified with FCC (1:1 Ethyl acetate: 

Hexane) (0.1 Ig as oil, 80% yield). 'H NMR (CDCI3, 6): 4.68 (d, J = 12 Hz, IH), 4.62 (d, 

J=3Hz, IH), 4.49 (d, J = 12 Hz, IH), 3.68 (dd, J = 3 Hz; 6Hz, IH), 1.6-2.5 (m, 8H), 1.16 (d, J 

= 7 Hz, 3H), 0.92 (d, J = 7 Hz, 3H), 0.82 (d, J = 7 Hz, 3H). '^C NMR (CDCI3, 5): 200.3, 

162.8, 134.5, 77.3, 72.5, 55.2,44.4, 36.5, 36.3,33.3, 32.6, 27.6,21.2, 18.5, 16.7. MS m/z 

(CI-NH3); (M-OH) 251. HRMS (M-OH): 251.164719 (cal. M: 268.167459). 

Hibiscone C 

A solution of oxalyl chloride (0.043 mL, 0.5 mmol) was added to DMSO (0.1 mL, 1.4 

mmol) solution in methylene chloride at -78°C under nitrogen. Then, after 5 minutes, 37 

(0.054 g, 0.2 mmol) in methylene chloride (3 mL) was added. The resulting solution was 

stirred for 15 minutes, and then triethyl amine (0.5 mL) was added. After 15tninutes, the 

solution was warmed to room temperature. Water (2 mL) was added, and the product was 

extracted with methylene chloride (10 niLx3), washed with HCl (IN, 10 mL), saturated 

sodium bicarbonate (10 mL) and brine (10 mL), and dried with magnesium sulfate. After 

removal of the solvent, pure hibiscone C (40 mg, 85% yield) was obtained by preparative 

TLC (2:1 Hexane; Ethyl acetate). 'H NMR (CDCI3, 5): 8.10 (s, IH), 3.04 (ddd, J = 5 Hz; 11 

Hz; 11 Hz, IH), 2.78-2.83 (m, IH), 2.60 (dd, J = 3 Hz; 17 Hz, IH), 2.36 (dd, J = 13 Hz; 17 

Hz, IH), 2.17-2.23 (m, IH), 2.0-2.1 (m, IH), 1.85-1.94 (m, 2H), 1.35 (d, J = 7 Hz, 3H), 1.00 

(d, J = 7 Hz, 3H), 0.95 (d, J = 7 Hz, 3H). '^C NMR (CDCI3,5): 193.5, 188.7,147.8, 145.0, 

144.5, 123.3,48.0,42.8,40.1, 36.0, 30.1, 26.7, 20.9, 16.4, 15.5. IR (neat) cm"': 1717, 1646, 

1457. MS m/z (CI-NH3): 246. HRMS: 246.1260 (calculate forCisHisOs; 46.1256). 
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CHAPTER 3. SYNTHETIC APPROACH TO NATURAL ANALOGUES OF 

HALENAQUINONE 

A paper, a portion of which will be submitted to J. Org. Chem. 

George A. Kraus and Zhiwen Wan 

In recent years, marine natural compounds have attracted much interest because of 

their biological activities and structural variety. Many novel biologically active compounds 

have been isolated from marine sponges. In 1983, Clardy and co-workers reported a most 

unusual quinone from a tropical sponge collected in a Western Carolina Island'. 

Clardy' gave the name halenaquinone to the structure. A study of the biological 

activity of halenaquinone (1) by Clardy showed that halenaquinone possessed in vitro 

antibiotic activity against Staphyococcus aureus and Bacillus subtilis. At that time, the 

closest literamre analogue was quinone 2. The structure of halenaquinone was later 

determined by X-ray crystallographic structure analysis and its absolute stereochemistry was 

determined by Harada" in 1989. 

Introduction 

o o 

Halenaquinone (1) 

O 2 
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In 1985, Nakamura^ reported another biologically active metabolite from the 

Okinawan sea sponge Xestospongia sapra. He called it xestoquinone (3). The structure was 

similar to halenaquinone. He found that xestoquinone showed powerful cardiotonic activity 

and a marked inotropic action. It also caused a concentration-dependent inhibitory effect on 

Na, K-ATPase isolated from pig cerebral cortex. Xestoquinone was the first example of a 

marine natural product having parallelism between the inotropic action and Na, K-ATPase 

inhibition. More recently, Schmitz and a co-worker isolated fiiranone compounds including 

3 from a marine sponge, Adocia sp. From Truk Lagoon'*. They also revealed that some of the 

novel marine natural products showed cytotoxicity. 

In 1998, Scheuerand co-workers exaim'ned a sample of an undescribed species of 

Xestospongia from Derawan Island in Indonesia, and found 1 l,18-dimethyl-9-

hydroxylhalenaquinone (4)^. By studying the effects of halenaquinone (1), xestoquinone (3), 

and some non-natural analogues as protein tyrosine kinase inhibitors, Lee and co-workers 

found that halenaquinone was a potent irreversible inhibitor of PTKs.^ Halenaquinol 5, the 

corresponding hydroquinone, was also as potent as the quinone.^ They are among the most 

potent kinase inhibitors reported to date. In fact, only two other compounds, aeroplysin (6) 

and melemelone (7), have shown similar PTK activity.® Surprisingly, xestoquinone showed 

less PTK activity. 

O Me O O O 
Xestoquinone (3) 11, 18-dimethyl-9-hydroxyhalenaquinone (4) 

OH O 
Halenaquinol (5) 
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O 

.»vOH 

Br Br 
OMe 

Aeroplysinin (6) Me Meiemeieone ( 7) 

In 1993, Tsuji and co-workers discovered tliat halenaquinone (1) and xestoquinone 

(3) were potent inhibitors of topoisomerase I purified from the nuclei of the mouse leukemic 

cell LI210.^ Topoisomerase I and topoisomerase n are important targets for antitumor 

agents. In last few years, three total syntheses have been reported and a few approaches have 

been communicated. 

Harada's synthesis^ 

Harada began his synthesis with enantiomerically pure Wieland-Miescher ketone 8 

(Scheme 1). The carbonyl group at C-i was selectively protected. Reduction in liquid 

ammonia and TMSCl quenching afforded trimethylsilyl enoi ether 9. The anion generated by 

treating 9 with MeLi reacted with gaseous formaldehyde to give a hydroxy ketone. Lithium 

tri-5ec-butylborohydride reduction and deprotection of carbonyl groupgave keto diol 10. 

Formation of the hydrazone of 10 followed by treatment with MeLi, and glycol protection 

gave acetonide 11. Allylic oxidation afforded enone 12. 

The second part of the work was synthesis ofthe diene (Scheme 2). The bromination 

of 13 under radical condition gave dibromide 14. Treatment of 14 with sodium sulfide 

followed by MCPBA oxidation afforded sulfone 15. Sulfone 15 was heated at 305 °C-310 °C 

to give 16 in 48% yield. 
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1). 2-ethyl-2-methyl-
1,3,dioxane, PTSA 

2). Li, NHaiTMSCI, 
92% TMSO 

O 1)MeLi.CH20,89% 

2) Li(see-Bu)3BH, 92% 

3) HgO. PTSA, 98% 

1). p-Toluenesulfonyl-
hydrazide 

2)MeLi. 100% 
3)Acetone, PTSA,86% 

3,5-dimethyl-
pyrazole HO' 

"O 
11 

Scheme 1 

OMe 

OMe 
13 

OMe OMe 

NBS 

OMe 

14 

1). NaaS 

2). MCPBA 

Scheme 2 

OMe 

48% 

Compounds 16 and 12 were heated a sealed tube at 210 "C for 20 hours (Scheme 3). 

DDQ oxidation gave 17 in 30% yield. Ketone 17 in ferr-BuOH with KO-terf-Bu and air to 

give 18 in 80 % yield. Deprotection of the acetonide in 18 and Swem oxidation afforded 19. 

Halenaquinone was obtained by oxidation of 19. 

OMe 

1). heat 

2). DDQ 
OMe OMe 
16 

1).60%AcOH 

12 

2). DMSO, ix:c, 
TFA.Pyr 
44% OMe O 

19 

''ty 
KO-(-Bu 

Scheme 3 
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Xestoquinone was also synthesized by Harada.'° Treatment of 9 with MeLi and 

gaseous formaldehyde gave a P-hydroxyketone (Scheme 4). Protection of the alcohol, 

reduction of the carbonyl group, dehydroxylation, and deprotection gave ketone 20. The 

same procedures used to generate enonel2 were then used to generate 22. 

Compounds 16 and 22 were heated for 10 hours (Scheme 5). DDQ oxidation gave 23 in 32% 

overall yield. Ketone 23 was oxidized to afford 24. Deprotection of the acetonide of 24 and 

Swem oxidation generated 25. It was oxidized to produce xestoquinone (3). 

1). MeLi. CHaO 
2). Alcohol protection 
3). Li(sec-Bu)3BH 

4). Martin's Dehydroxylation 

5). Acid 
TMSO' RO 

1). p-Toluenesulfonyl 
hydrazicte 

2).MeU 

3). Acetone, PTSA, RO RO 
21 22 

Scheme 4 

OMe 
OMe OMe 

KO-f-Bu 
1). heat 

2). OOQ 
"OH OMe RO' 

16 
OMe OMe 

22 24 23 

CAN 

O o 

OMe 

2). DMSO, DCC, 
TFA,Pyr 

OMe 
25 

Scheme S 
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Shibasaki's synthesis" 

In 1998, Shibasaki and co-workers described an asymmetric total synthesis of 

halenaquinone via a Suzuki cross-coupling and an asymmetric Heck reaction. The synthesis 

(Scheme 6) started with the catechol 27, which was obtained from tetralone 26 in 4 steps. 

Compound 27 was converted into 28 in 99% yield. Product 30 was obtained from bistriflate 

28 and 29 via a tandem Suzuki coupling and Heck reaction in 20 % yield with 85% ee. With 

large quantities of 30 in hand, they were ready to pursue a catalytic Symmetric synthesis of 

1. Compound 30 was converted into an aldehyde. Sodium borohydride reduction gave 

alcohol 31. Compound 31 was uransformed into a triflate. It was converted into ketone 32. 

After protection of the carbonyl group and silylation of acetylene, 32 was oxidized to give 

33. The reaction of 33 with oxygen in presence of a base followed by iodinatlon and 

deprotection gave 34. Treatment of 34 with a palladium reagent followed by desilylation 

afforded 19 in 60% yield. Compound 19 was converted into 1 by oxidation. 

Keay's synthesis" 

In 1996, Keay and co-workers reported another asymmetric palladium catalyzed 

synthesis of the pentacyclic ring system. The synthesis started with furan 35 (Scheme 7). 

Treatment of 35 with TBDMSCl and imidazole followed by BuLi treatment gave 36. The 

dianion from 36 was quenched with trimethylborate gave 37. Suzuki coupling, Swem 

oxidation and Wittig olefination generated 38. The anion from 38 reacted with 39 to give a 

ketone. Desilylation and triflate formation, provided 40. Compound 40 was cyclized in the 

presence of (S)-(+)-BINAP to give 42 and 41 in a 2 to 1 ratio. Compound 42 converted into 

3 by hydrogenation and oxidation. 
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OMe OMe 

TfaO. Pyr. 

99% 

OMe 28 

P TBDMSO^ 
29 

Pd(0Ac)2, (S)-BINAP, 
K2CO3. 20% 

OMe .̂ •̂ otbdms 

OMe 

1).BU4NF 
2). NaBH4 

OMe 

OMe 31 

ll.TfgO.EtaN 

2). LDA cN 

TMS—^—< 
then NaF bTMS 

1). H0(CH2)30H 
PTSA. 98% 

2). 2 eq n-BuLi 
TIPSCI, 98% 

3). DDQ 

OMe 

IPS 

1). Oz, KO-f-Bu, 79% 
2). Nal, CUSO4.97% 

3). PTSA. H2O 

1). Pd2(bda)3 
K2CO3. DMF 

2). BU4NF 
60% 

Scheme 6 
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HO^ HO /Mon\ R ^ 1)Pd(PPh3)4, 

^ DTBSCI, ^ i,2eqnj"r= )nf Q ô̂ TBS 3̂;̂ " 

35 

38 

36 

n-BuLi, 77% 

O 

37 

OMe 

10mol% Pd(PPh3)4 
2060 NEto. 100°C 
74%. 42:41=2:1 

OTBDMS 

1). BU4NF 

2). NaH, PhNTfg 

OMe 

1).Pd/C. H2 

® 2). CAN 

Scheme 7 

Synthetic approaches to halenaquinone 

Several synthetic approaches have been reported in the past few years. Most of the 

approaches have focused on the development of the Diels-Alder precursors 44 and 45 

(Scheme 8). The halenaquinone skeleton was constructed by the Diels-Alder reaction of 

either diene 16 or benzofuran 43. 

OMe 

X=H,H 25 
X=0 19 

OMe 1 OMe 
r 1 

1 
M P 

T 
OMe - OMe 

16 43 X=H44 
X=0 45 

Scheme 8 
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One of the approaches was reported by Carlini and co-workers in 1997 (Scheme 9).'^ 

Oxidation of phenol 46 in the presence of an excess of 2,4-pentandien-l-ol gave the Diels-

Alder product 47. Compound 47 reacted with 43 to give 48. Xestoquinone was obtained 

from 48 by standard procedures. 

OMe 

Phl(02CCF3)2 
5 eq (E)-2,4-pentadjenol 

2 eq NaHCOs 

OMe 

Scheme 9 

Another unique strategy was described by Kanematsu and co-workers in 1991.''* 

They developed a furan synthesis for synthesis of halenaquinone (Scheme 10). Oxidation of 

49 by a known procedure followed by LAH reduction and ether formation generated SO. 

Rearrangement of 50 provided 51. The Claisen rearrangement of 51 provided 52. Ketone 52 

was transformed into ketone 44. 

\ 1). NaH, 1,3-bis(o-nitro-
Q/ phenylthio)propane 

2). LAH 
3). n-BuLi, propargyi 

bromide 

(MeO)2CMeNMe2 

1).K0t-Bu 

2). NBS 

52 
Scheme 10 
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Results and Discussion 

Our reUrosynthetic analysis is shown in Scheme 11. To examine this strategy, we 

generated cyclohexenone 57 via one-pot double Michael addition and cyclization (Scheme 

12).'^ The precursor 55 was prepared from 57 by a sequence of reactions involving 

hydrogenation, aldehyde formation and alkene formation. Unfortunately, the reaction of 

cyclohexenone 55 with the anion of ethyl dichloroacetate did not give furan 54. The failure 

may be attributed to steric hindrance. 

EtOsC 
OEt 

Scheme 11 

1).Pd/C. Hg 

2). LDA, 10 eq HCOOEt, 

3). Pyr, PhSeBn H2O2 

Scheme 12 

The next retrosynthetic analysis is shown in Scheme 13. Triol 58 was a key 

intermediate. Compound 59 was planned to come from 60. 

The synthesis started with the known compound 61.'® Although Robinson annulation 

reaction with methyl vinyl ketion (Scheme 14), the alkylation of 61 with 62'^ gave 63 in 80% 

yield. Following the same procedure as in the synthesis of hibiscone C, 63 was treated with 

excess potassium tert-butoxide in r^rr-BuOH to give 64. 
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60 61 

Scheme 13 

O 
61 

Scheme 14 

The next retrosynthetic analysis is shown in Scheme 15. The reaction sequence 

involving Michael addition followed by annulation was utilized by our group to make 3-

deoxyrabelomycin." Quinone 68 and silyl enol ether 69 could react to give the required 

cyclization product 67. A procedure similar to that employed for the synthesis of hibiscone 

C would then be used to generate furan 66. The triflate chemistry would then be used to 

convert the dihydroxy group to R = H or R = Me. 

LDA. MVK 
\\ • 

LDA 
OTMS 

KO-f-Bu ^ 

f-BuOH 
80% 
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.0 

OMeR O OMe OTf O OMe OH O 
R=H or Me 65 66 

OMeOH O 
67 

OMeO O 
68 

OTMS 

69 

Scheme 15 

To evaluate this strategy, we started with a simple model system. Readily available 

quinone 70" was selected for this purpose. The reaction of silyl enol ether 69 reacted with 

70 in methylene chloride gave intermediate 71. Aromatization of 71 with potassium 

carbonate in acetone resulted in the generation of the cyclization product 72 (Scheme 16). 

With this successful cyclization, we started the synthesis of halenaquinone. 

Naphthoquinone 68"° was prepared in modest yield by oxidation of 74, which, in turn, was 

prepared via a Diels-Alder reaction, aromatization, phenol acetate formation and Fries 

rearrangement (Scheme 17). Quinone 68 reacted with enol silyl ether 69, giving Michael 

addition intermediate 75. The model system procedure was used for the aromatisation or 

cyclization of 75. Unfortunately, 75 was recovered after boiling with potassium carbonate in 

acetone. When potassium rerr-butoxide in t-BuOH was used instead of potassium carbonate, 

cyclization product 76 was isolated as the only product. 

OTMS 

refluxing 

KsCOa, Acetone 

69 
OH O 

72 

Scheme 16 
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OMe 
1). NaNH2. Furan 

2). HCI, MeOH, heat 

3). AcCI, DMAP, Pyr. 

OMe 4). BF3 EtaO, 60 °C 
72 

OMeO 

OMe OMeO 

OTMS 
69 

OMeOH O 
74 

K2CO3, Acetone 

OMe O OH 
75 

O refluxing 

KO•^Bu 

f-BuOH 
70% 

Scheme 17 

OMeO O 
68 

OMe OH 

OMe OH 0*^ 

76 

We then dedicated to add the A ring via a Diels-Alder reaction. The retrosynthetic 

analysis is shown in Scheme 18. Before we started to study the Diels-Alder reaction, we 

needed to test the strategy for making the furan. We tried to generate fiiran 77 from 72 by 

the procedure used to synthesized hibiscone C. Compound 72 wasconverted into ether 78 

(Scheme 19). The reduction of 78 with LAH followed by acid mediated rearrangement gave 

79. However, the y,5-doubIe bond could not be oxidized with either osmium tetraoxide or 

MCPBA. 

OH 

OH O 

OMeOH 

OMeOH O 

OH 

OH O 
66 77 72 

Scheme 18 
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MCPBA 
OH O OMeO OMe or0s04 OMe OH 

72 78 79 80 

OH 

Scheme 19 

We next decide to introduce the alkoxy group onto quinone. Compound 82 could be 

prepared from anion 83 (Scheme 20). 

We generated the side chain via an anion of a protected hydroquinone. Protected 

hydroquinones were deprotonated by rerf-BuLi."' Hydroquinone 84 was obtained from a 

sequence of reactions involving protection of hydroquinone with ethyl vinyl ether and PPTS, 

anion generation, anion quenching with a-benzyloxylacetaldehyde,~ and deprotection with 

acid. Quinone 85 was prepared by two-step oxidation. Both MnOo and DDQ oxidation of 84 

gave a hydroxyquinone.^ The Dess-Martin oxidation provided quinone 85. Two 

equivalents of the Dess-Martin reagent oxidized 84 to 85, but the yield was poor. The 

sequence of DDQ and Dess-Martin oxidation provided the best yield of 85. With 85 in hand, 

the tetracyclic product 86 was obtained by Michael addition followed by base-induced 

cyclization (Scheme 21). Compound 85 was also obtained via a photochemical reaction 

(Scheme 22)."'* Irradiation of benzoquinone and a-benzyloxylacetaldehyde afforded 87 in 

good yield based on 'H NMR. 

OTMS 
OH O 

81 

O OR' 

OH O 
77 69 82 83 

Scheme 20 
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1). Ethyl vinyl ether, PPTS^ 

2). f-BuLi, BnOCHzCHO 
OH 3), HCI. THF 

1)DDQ 

OTMS 
69 

OBn 
O O 

85 

OBn 2) Dess-Martin 
OH OH reagent 

84 

K2CO3, acetone 

heat OH O 
86 

Scheme 21 

hv 

BnOCHgCHO 
MnOo 

OBn 

1). Ethyl vinyl ether, PPTS 

2). r-BuLi, BnOCHgCHO 

3). Swem ox. 
4). HCI, THF OH O 

OBn 

OBn 

Scheme 22 

The reduction of 86 with excess LAH in THF followed by rearrangement produced 

stable enol ether 89. Treatment of 89 with 3 equivalents of NBS in acetonitrile gave 

bromoquinone 90 (Scheme 23). However, the reaction of 90 with 1-

trimethylsilyloxybutadiene or 1,1,4-trimethoxybutadiene gave low yields. 

OH 

OBn 

OH O 

OH 
OH LAH; HCI NBS 

OBn OBn 
O Br 

Scheme 23 
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Hydroquinone 86 was the protected. Treatment of the protected compound with LAH 

followed by acidic rearrangement afforded enol ether 91 in almost quantitative yield. 

MCPBA oxidation of 91 provided alcohol 92. Alcohol 92 was oxidized with PCCto afforded 

ketal 93. Finally, furan 94 was obtained by boiling 93 with concentrated HCl in MeOH 

(Scheme 24). 

0 1). K2CO3, 
Me2S04 MCPBA 

"^OBn 2). LAH; HCl ^ ̂  "oBn 

OH O OMe 91 

'.O 

H^ Heat, 

OMeO OMe OH 
OBn 

Scheme 24 

OMeO 

After the successful preparation of a furan, we evaluated the conversion of the 

hydroquinone unit into a xylene unit. Compound 86 was used to examine this strategy 

(Scheme 25). Compound 86 was treated with excess TfiO, pyridine and DMAP to give 95. 

Treatment of 95 with a palladium catalyst and excess dimethyl zinc in boiling benzene 

afforded a mixture of 96 and 97."^ The yield of 97 was improved by a longer reaction time. 

TfaO. Pyr Pd(PPh3)4 

OBn DMAP OBn ZnMez ^ 'OBn 

OTf O OTf O 

95 96 
Me O 

Scheme 25 
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The next problem we faced was the Diels-Alder reaction to generate the A ring.. 

Quinone 98, which was obtained by oxidization of 86 with MnOa, reacted with 1,1,4-

trimethoxylbutadiene. The major product was the reduced product 86. The Diels-Alder 

product 99 was produced in less than 10% yield (Scheme 26). 

OMe 
OMeO 

(MeO)2 0^0 

10% Minor 

Scheme 26 

However, ureatment of 98 with 1-trimethysilyloxybutadiene produced the 

regioselective Diels-Alder product 100. Treatment of 100 with acid provided hydroquinone 

101. Furan 102 was obtained by phenol protection, LAH reduction, acid rearrangement, 

MCPBA oxidation, PCC oxidations, and acid treatment (Scheme 27). 

OTMS 

98 
TMSO O O 

100 

1). Me2S04, 
K2CO3 

2). LAH: HCI 

3). MCPBA 
4). PCC; HCI 

OMeO 
102 

Scheme 27 

OH O 

With 102 in band, we were able to examine the bis-triflate strategy in this pentacyclic 

system. Compound 102 was demethylated by a two-step reaction sequence involving 

oxidation with silver(II) oxide and nitric acid to a quinone and then hydrogenation to the 

hydroquinone. The hydroquinone was converted into a bis-triflate 103 with 
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trifluoromethanesulfonic acid anhydride, pyridine and DMAP. However, bis-triflate 103 did 

not give the dimethyl product 104. It decomposed upon treatment with dimethyl zinc and a 

palladium catalyst (Scheme 28). 

We next studied the oxidation of the A ring to a quinone. Treatment of adduct 100 

with Jones' reagent at 0 "C followed by sodium hydrosulfite reduction, gave triol 105."' 

Protection of 105 with excess sodium hydride and dimethyl sulfate gave product 106. 

However, 106 could not be transformed into ftiran 107. The MCPBA oxidation led to 

demethylation, which interfered with the PCC oxidation (Scheme 29). 

OMeO 
102 

1).AgO 
2). Pd/C. Hg 

3).Tf20,Pyr. 

Pd{PPh3)4 
MegZn 

Vv 

Scheme 28 

OH 

1). Jones'ox. 
NaH 

OBn 2). Na2S204 
MeoSO. 

TMSO OH OH O 
105 
OMe 

100 .0 ,0. 
OMe 

OBn 
OMe OMe O OMe OMe O 

106 107 
Scheme 29 

we decided to convert the hydroquinone unit into the xylene unit. Compound 105 

was prepared with 1.2 equivalents of dimethyl sulfate and potassium carbonate. The 

intermediate was treated with excess TfiO and pyridine to a^ord bis-triflate 108. 

Unfortunately, it decomposed during LAH reduction or reaction with dimethyl zinc with a 

palladium catalyst (Scheme 30). 
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OH OH O 

105 

O 
1. M62SO4, K2CO3 

OBn 2. TfaO, Pyr. DMAP^ 

OMeOTf O 

108 
Scheme 30 

LAH 

Dscompossd 

OBn ZnMea ^ 

We then returned to furan 94 and hoped that the fiiran would be more stable. 

Treatment of 94 with silver(II) oxide and 6 N nitric acid followed by hydrogenation produced 

hydroquinone 77. Compound 77 will be tested to understand the structure-activity 

relationships in the halenaquinone system(Scheme 31). 

OH 

Ha, Pd/C 

OH O 

OMe 

OMeO 
94 109 77 

Scheme 31 

Quinone 109 was treated with trimethylsilyloxybutadieneto give 110. Treatment of 

110 with acid gave lll(Scheme 32), which also will be tested to develop the structure-

activity relationships. When Jones' reagent was used instead of acid, triol 112 was obtained. 

Monoprotection of 112 followed by treatment with excess TfaO and pyridine produced 

ditriflate 113. However, treatment of 113 with Pd(PPh3)2Cl2, tetramethyl tin and lithium 

chloride did not generate methylation product 114. The crude product had no furan proton. 

The best opportunity to achieve the synthesis had been the route starting with the 

furan precursor 93. The ketal structure might be stable to the methylation reaction (Scheme 

33). Triol 115 was obtained by a Diels-Alder reaction and a Jones' oxidation of 93. 

Methylation of 114 via a procedure for the reductive methylation of hydroxy quinones 

generated triether 116}^ Oxidation of 116 with AgO followed by the reduction with 

Na2S204 in pH 7 buffer solution provided 117. With 117 in hand, bis-triflate 118 was 

prepared. Unfortunately, 117 was obtained when 118 was heated in benzene with dimethyl 

zinc and a palladium catalyst. 
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^ 1.Jones ox OTMS 

2. red. 

TMSO 

OH O 

OH OH O 
112 

1. Me2S04, K2CO3I 
2.Tf20, Pyr, DMAH 

Me4Sn, LiCI 
^ Pd(PPh3)2Cl2 

OMe Me O 
114 
Scheme 32 

OMe OTf O 
113 

Na2S204 
KOH 

OTMS 
3). Jones ox. 

OTf OH 

117 1).AgO, HNO3 
•MAP 

OMe OTf 0 OMe OH O 
117 118 

Scheme 33 

Conclusion 

We have demonstrated a unique pathway to the furan skeleton of halenaquinone via a 

sequence of reactions involving Michael addition, cyclization and Diels-Alder reaction. In 

addition, analogs of halenaquinone were produced for a structure-activity relationship study 

of this anti-cancer reagent. The intermediates generated here have the potential for eventual 

transformation into halenaquinone. 
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Experimental 

Unless otherwise noted, the materials used in the experiments for this research were 

obtained from commercial suppliers and were used without further purification. THF and 

diethyl ether were distilled from sodium benzophenone ketyl. Benzene, dichloromethane, 

acetonitrile, toluene, diisopropylamine were distilled from calcium hydride. The reactions 

were conducted in a nitrogen atmosphere and the organic extracts were dried with 

magnesium sulfate. The melting point was determined on a Fisher-Johns apparatus and was 

not corrected. Infrared spectra were obtained on a Perkin-Elmer model 1320 

spectrophotometer and nuclear magnetic resonance spectra were determined on a Nicolet 

Magnetics Corporation NMR-1280 Spectrometer. 

All chemical shifts are reported in 5 relative to tetramethylsilane as an internal 

standard. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd 

(doublet of doublets), dt (doublet of triplets), and m (multiplet). The addition of br indicates 

a broadened pattern. 

The glass apparatus were flame-dried and cooled under the steam of nitrogen. Flash 

column chromatography was conducted using Neutral or Basic Aluminium (Brockmann) 

standard grade (150 mesh) from Aldrich Chemical Company and Silica Gel (EM Science 

Kieselgel 60 (mesh 230-400). Thin layer chromatography was performed using EM Science 

Kieselgel F254 prepared plates with a thickness of 0.25 nun. High resolution MS was 

obtained from Kratos Model MS-50 spectrometer and low resolution MS was obtained from 

a Finnegan 4023 Mass spectrometer. 

l-(2,5-dihydroxyphenyl)-2-benzyloxyethanol (84). 

PFTS (0.1 g) and ethyl vinyl ether (100 mL, 1.1 mol) was added to hydroquinone (22 

g, 200 mmol) in methylene chloride (200 mL). The resulting solution was stirred overnight. 

Water (100 mL) was added, and the organic layer was separated and washed with sodium 

hydroxide (IN, 100 mL) and brine (100 mL), then dried with magnesium sulfate. After 

removal of the solvent, the pure 2,5-di (I-ethoxyethoxyl) benzene'^ was obtained by 

distillation under reduced pressure. 
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N-BuLi (1.7 M in hexane, 40 mL, 68 mmol) was added dropwise to 2,5-di (1-

ethoxyethoxyl) benzene (12.7 g, 50 mmol) in dry diethyl ether solution at 0 °C under 

nitrogen. After 3 hours, the resultant light yellow solution was cooled to -78°C and a-

benzoxyacetaldehyde"(10.5 g, 70 mmol) in diethyl ether (50 mL) was added in 5 minutes. 

The solution was then stirred for 6 hours and slowly warmed to 0°C. Water (50 mL) was 

added and the solution was acidified to pH 1 with hydrochloric (6 N). It took about 1 hour to 

completely remove the EVE protection group, which was monitored with TLC. Brine (100 

mL) was then added and the organic layer was separated. The aqueous solution was 

extracted with ethyl ether (100 mL x 4). The organic layers were combined and washed with 

sodium bicarbonate (10%, 100 mL) and brine (100 mL), then dried with magnesium sulfate. 

After removal of the solvent, 84 (10.0 g, 80% yield) was obtained from flash column 

chromatography eluted with a mixture of ethyl acetate and hexanes (1:1). It was U'ansferred 

to quinone at once. 'H NMR (CDCb, 5): 7.70 (br, 1 H), 7.20-7.35 (m, 5 H), 6.67 (d, J = 6 Hz, 

IH); 6.59 (dd, J = 6 Hz; 1 Hz, IH), 6.44 (d, J = 1 Hz, IH), 4.69 (br, IH), 4.89 (dd, J = 6 Hz; 

IHz, IH), 4.54 (dd, J = 9 Hz; 9 Hz; 2H), 3.55-3.65 (m, 2H), 3.41 (br, IH). '^C NMR 

(CDCl3,5): 149.3, 148.9, 137.2, 128.7, 128.2, 128.1, 124.2,118.2,116.2, 114.3,73.6,73.7, 

73.5. 

2-(2-Benzyloxy-l-hydroxyethyl)-l,4-benzoquinone 

The 2,3-dichloro-5,6-dicyano-I,4-benzoquinone (DDQ) (4.6g, 20 mmol) was added 

to the solution of 84 (5.2 g, 20 mmol) in methylene chloride (100 mL). After 1 hour, the 

solution was filtered and the filtrate was concentrated. A 2-(2-Benzyloxyl-l-hydroxyethyl)-

1,4-benzoquinone was obtained after flash column chromatography (5.0 g, 99% yield). 'H 

NMR (CDCb, 5): 7.28-7.39 (m, 5H), 6.92 (s, IH), 6.74 (dd; J = 7 Hz, 2H), 4.9-5.0 (m, IH), 

4.57 (dd, J = 12 Hz, 2H), 3.79 (dd, J = 9 Hz; 3Hz, IH), 3.43 (dd, J = 9Hz; 6Hz, IH), 2.90 (d; 

J = 3 Hz, IH). '^C NMR (CDCb, 8): 187.5, 187.1, 146.9,137.4, 136.7, 136.5,132.7, 128.6, 

128.1, 127.9,73.4, 72.9, 67.1. HRMS m/z: 258.0896, for C15H14O4 calculated. 258.0892. 

a-Benzyloxyacetyl-1,4-beiizoquinone (85). 

A solution of Dess-Martin reagent (9.4 g, 22 mmol) in methylene chloride was added 

to the solution of 2-(2-BenzyIoxyI-l-hydroxyethyl)-i,4-benzoquinone (5.2 g, 20mmol) in 
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methylene chloride (40 mL) under nitrogen. The reaction was monitored and completed in 

about 30 minutes. The solution was put on a short silicon gel colunm (3.5 cm x 5 cm) and 

flushed with a mixture of hexanes and ethyl acetate (3:1). The pure 85 was collected as an 

orange crystal (3.6 g, 71% yield), which was used at once in the next step. 'H NMR (CDCI3, 

5): 7.3-7.4 (m, 5H), 7.02(d, J = 3 Hz, IH), 6.84(dd, J = 9 Hz; 3Hz, IH), 6.78 (d, J = 9 Hz, 

IH), 4.61 (s, 2H), 4.55 (s, 2H). '^C NMR (CDCI3, 5): 196.9, 186.8, 185.2, 142.1, 136.9, 

136.6, 136.5, 135.9, 128.6, 128.3, 128.2, 75.6, 73.9. 

6-MeUiyl-5-triinethylsiloxy-2A7,8-tetrahydrobenzo-l^-dioxane(69) 

Compound 60 (3.4g, 20 nmiol) in THF (10 mL) was added dropwise to a solution of 

LDA (25 mmol from BuLi and diisopropylamine) in THF (30 mL) at -78°C under nitrogen. 

The reaction was stirred at -78 "C for 1 hour and chlorotrimethylsilane (2.5 g, 23 nrniol) was 

added to the reaction mixture. After 4 hours at -78 °C, pentane (100 mL) was added, and the 

resultant solution was washed with pH 7 buffer (30 mL) and dried with magnesium sulfate. 

Removal of the solvent produced the pure compound 68 (4.6 g, 92% yield), which was used 

at once. 'H NMR (CDCI3, 5); 0.95 (s, 2H), 1.0 (s, 2H), 2.20-2.25 (m, 4H), 1.62 (s. 3H), 0.20 

(s; 9H). '^C NMR (CDCI3,5): 148.5, 140.3,106, 105.9,90.5,64.0,27.9,25.7, 16.3,0.5. 

5-Benzyloxy-7,10-dihydroxy*10&-menthyl-2,4,6, lOfr, 11,12 -hexahydro-6*oxo-

phenanthro [2,l-</l-l,3-dioxin (86) 

A solution of 84 (3.4 g, 14 mmol) in methylene chloride (40 mL) was added dropwise 

to a solution of 69 from 3.4 g 61 in methylene chloride (30 mL) at -78 °C under nitrogen. 

The resultant solution was stirred overnight and slowly warmed up, then concentrated to give 

a dark residue. The dark residue was dissolved in dry acetone (100 mL), and flashed with 

nitrogen. Potassium carbonate (20 g, 180 mmol) was added to this acetone solution. The 

resulting solution was refluxed fori 2 hours and then concentrated. The residue was 

dissolved in water, neutralized carefully with HCl (6 N) and extracted with ethyl acetate (50 

mL X 3). The organic layers were combined and washed with brine then dried with 

magnesium sulfate. Removal of the solvent, followed by flash column chromatography, 

provided 86 as a yellow crystal (3.7g, 65% yield). 'H NMR (CDCI3,8): 13.1 (s, IH), 7.25-

7.50 (m, 5H), 6.78 (d, J = 6 Hz, IH), 6.76 (d, J = 6 Hz. IH), 5.84 (s, IH), 5.15 (d, J ^ 3 Hz, 
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IH), 9.00 (d, J = 3 Hz, IH), 4.95 (s, 2H), 4.86 (d, J = 12 Hz, IH), 4.27 (d, J = 12 Hz, IH), 

3.35 (dd, J = 9 Hz; 3Hz, IH); 2.45-2.50 (m, IH), 2.20 (dd, J = 9 Hz; 3Hz, IH), 1.56 (s, 3H), 

1.40-1.55 (m, IH). '^C NMR (CDCI3,8): 185.7, 156.2,156.1,149.7, 142.2, 136.6,134.1, 

128.8, 128.5, 128.3, 124.2, 115.9, 115.7, 105.7,90.9,74.2,67.4,40.1, 27.3, 25.0,22.2. 

HRMS m/z: 406.1420, for C23H22O6 calculated: 406.1416. 

lO-benzyloxy-5,8-diinethoxy-l-hydroxyme(hyl-4a-niethyl*2-oxo-2,3,4,4a-

tetrahydrophenanthrene (90): 

A solution of 86 (2 g, 5 mmol), potassium carbonate (20 g, 150 nimol) and dimethyl 

sulfate (5 mL, 50 mmol) in acetone (100 mL) was boiled under nitrogen for 36 hours. Then 

the acetone was removed under vacuum, and the residue was dissolved in water (50 mL) and 

stirred fori hour to decompose the dimethyl sulfate. Compound 90 was extracted with ethyl 

acetate (30 mL x 3), washed with brine and then dried with magnesium sulfate. Removal of 

solvent, followed by flash column chromatography, produced dimethylated 86 (2.15 g, 98 % 

yield). 'H NMR (CDCI3,8): 7.46 (d, J = 6 Hz, 2H), 7.2-7.4 (m, 3H), 7.05 (d, J = 9 Hz, IH), 

6.93 (d, J = 9 Hz, IH), 5.11 (d, J = 6 Hz, IH), 4.98 (d, J = 9 Hz, IH), 4.97 (d, J = 6 Hz, IH), 

4.92 (d, J = 9 Hz, IH), 4.81 (d, J = 12 Hz, IH), 4.25 (d, J = 12 Hz; IH), 3.90 (s, 3H), 3.84 (s, 

3H), 3.18 (dd, J = 9 Hz; 6 Hz, IH), 2.4-2.5 (m, IH), 2.17 (dd, J = 15 Hz; 6 Hz, IH), 1.52 (s, 

3H), 1.4-1.5 (m, IH). '^C NMR (CDCI3.8); 180.3, 154.5, 153.9, 150.9, 144.1, 143.2, 139.1, 

137.3, 128.9, 128.3, 128.0, 122.1,116.3,111.5,105.6,90.8,73.6,67.6, 56.9,55.8, 39.7,28.4, 

25.1,22.3. 

Dimethylated 86 (2.15 g, 4.9 mmol) solution in THF (10 mL) was added to the 

suspension of LAH (300 mg, 7.9 mmol) in THF (50 mL) at 0 °C. After 3 hours, the reaction 

was quenched with water (2 mL) and acidified to pH 1 by HCl (6 N). The resultant yellow 

solution was stirred for 20 minutes. Brine (20 mL) and ethyl acetate (30 mL) was added and 

the organic layer was separated, and then the aqueous layer was extracted with ethyl acetate 

(30 mL X 2). The organic layers were combined and washed with saturated sodium 

bicarbonate (30 mL), brine (30 mL) and dried with magnesium sulfate. After removal of the 

solvent, 91 was obtained pure enough (1.95 g) for the next step. 'H NMR (CDCI3,8): 7.3-

7.5 (m, 5H), 6.73 (s, IH), 6.52 (s, IH), 5.11 (d, J = 12 Hz, IH), 5.02 (d, J = 12 Hz, IH), 4.4-
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4.6 (m, 2H), 3.83 (s, 3H), 3.79 (s, 3H), 3.45-3.55 (m, iH), 2.45-2.70 (m, 3H), 2.0-2.15 (m, 

IH), 1.49 (s, 3H). 

5a-Beiizyloxy-7,10-dimethoxy-6'hydroxy-10fr>menthyl-3-oxo>2,3,4^, 6,10ft -

hexahydro-phenanthro[4,4<i-6]furan (92) 

MCPBA (68%, 1.9 g, 7.5 mmoie) was added to the solution of 91 (1.95g, 4.8 mmol) 

in methylene chloride (50 mL). The solution was stirred overnight. Sodium thiosulfate 

(10%, 10 mL) was added to quench the reaction, the organic layer was separated and washed 

with sodium hydroxide (3N, 50 mL), brine (50 mL), and then dried with magnesium sulfate. 

Removal the solvent under vacuum provided 92 (2.0 g, total yield 98%). 'H NMR (CDCI3, 

5): 7.2-7.3 (m, 5H), 6.88 (d, J = 9 Hz, IH), 6.81 (d, J = 9 Hz, IH), 5.28 (s, IH), 5.04 (d, J = 

12 Hz, IH), 4.87(d, J = 12 Hz, IH), 4.65 (d, J = 12 Hz, IH), 4.41 (d, J = 12 Hz, IH), 3.81 (s, 

3H), 3.82 (s, 3H), 3.1-3.2 (m, IH), 2.75-2.9 (m, IH), 2.5-2.6 (m, IH), 2.05-2.2 (m, IH), 1.78 

(s,3H). '^C NMR (CDCI3,5): 195.9, 158.7, 152.6, 152.4, 138.0, 134.5, 130.8, 128.3, 127.5, 

127.4, 125.1, 112.9, 112.7, 110.1, 73.5, 67.7,65.2, 56.3,55.7, 38.6, 35.8, 35.7,21.8. 

5a-Benzyloxy-7, lO-dimethoxy-lOft-methyl-3,6-dioxo-2,3,4,5a, 6,106-

hexahydrophenanthro[4,4a-6]furan (93) 

PCC (2.0 g, 9.4 mmol) was added to a solution of 92 (2.0 g, 4.7 mmol) in methylene 

chloride (50 mL). The resultant solution was stirred overnight. Then the solution was 

filtered through Celite which was washed with methylene chloride (20 mL x 5). The filtrate 

was washed with saturated ammonium chloride (50 mL) and brine (50 mL), and then dried 

with magnesium sulfate. Removal of the solvent, followed by flash column chromatography, 

provided 93 (1.7g, 85% yield). 'H NMR (CDCI3, 5): 7.15-7.3 (m, 5H), 7.09 (d, J = 6 Hz, 

IH), 6.88 (d, J = 6 Hz, IH), 5.05 (d, J = 12 Hz, IH), 4.88 (d, J = 12 Hz, IH), 4.71 (d, J = 9 

Hz, IH), 4.56 (d, J = 9 Hz, IH), 3.83 (s, 3H), 3.78 (s, 3H), 3.1-3.2 (m, IH), 2.75-2.85 (m, 

IH), 2.45-2.55 (m, IH), 1.95-2.05 (m, IH), 1.86 (s, 3H). '^C NMR (CDCI3,5): 194.7, 190.3, 

157.9,154.5,151.5, 137.4,135.6, 135.1,128.2, 127.6, 127.5, 122.5,118.3,112.2, 109.1, 

72.7,66.7,56.8,55.9,38.7,35.7,35.5, 21.4. 
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7,10-Diinethoxyi-106-menthyN3,6-dioxo-2,3,6,10A-tetrahydrophenanthro[4,4a< 

6]furaii (94) 

Concentrated HCl (10 mL) was added to a solution of 93 (2.1 g, 5 mmol) in methanol 

(20 mL). The resultant solution was boiled for 3 hours. Then the solution was concentrated 

under vacuum and the residue was dissolved in ethyl acetate (100 mL), which was washed 

with saturated sodium bicarbonate (15 mL) and brine (20 mL), and then dried with 

magnesium sulfate. Removal of the solvent, followed by flash colunm chromatography, 

produced 94 (1.2 g, 77% yield). 'H NMR (CDCI3,8): 8.11 (s, IH), 7.13 (d, J = 6 Hz, IH), 

7.00 (d, J = 6 Hz, IH), 3.93 (s, 3H), 3.89 (s, 3H), 3.45-3.5 (m, IH), 2.85-2.95 (m. IH), 2.60-

2.70 (m, IH), 1.95-2.05 (m, IH), 1.65 (s, 3H). '^C NMR (CDCI3, 8): 193.1, 172.9, 156.5, 

151.9, 147.5, 145.4, 144.6, 138.4, 123.4, 122.2, 117.4, 113.1,57.1,56.0, 36.9, 36.4, 32.5, 

25.6. MS m/z (CI-NH3): 312. 
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CHAPTER 4. A SYNTHETIC APPROACH TO AQUAYAMYCIN 

A paper, a portion of which was published in Tetrahedron Letter 

George A. Kraus and Zhiwen Wan. 

Introduction 

The angucyclines' are a relatively new group of antibiotics with antitumor, enzyme 

inhibitory, antiviral, and antifungal activity. This novel type of microbial natural product 

bearing a tetracyclic ring frame was first described in 1966." The name came from the 

characteristic four-ring frame of the aglycone moiety which is assembled in an angular 

manner.^ The classification of the angucyclines is related to the tetracyclic 

benzo[a]anthracene system and its derived compounds. 

2 

The tetracyclic benz[a]anthracene frame 

Aquayamycin (I)"* and sakyomycin D (2)^, our target molecules, are two members of 

the angucyclines. They inhibit the proliferation of HIV in vitro. Aquayamycin was first 

described in 1968.® The structure was later determined in 1970.** 

A study of its chemistry'* showed that aquayamycin is sensitive to acid, base, and 

light. Acidic treatment of 1 in methanol yielded a tricyclic ring system (4). The mechanism 

is shown in Scheme 1. The initiation step of this reaction was suggested to be the attack of 

methanol at C-1 catalyzed by acid followed by a cleavage of the C-12b/C-l bond. The 

product was also found as a methyl ester of a natural product, namely of vineomycinone Ba 

(fridamycin A).' 
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8 

When 1 was treated with weak bases (e.g., Ba(0H)2 or heat), the cleavage of the 

C12b/C4a bond followed by rearrangement occurred to give the linear tetracyclic compound 

7. Irradiation of 1 with light resulted in the linear derivative 10. The reaction mechanism 

involves conrotatory ring opening, isomerization, and conrotatory cyclization. 
a 

In past few decades, the synthesis of angucycline antibiotics focused on the 

development of skeleton and some simple members, such as ochromycin (11),^ tetrangulol 

(12)," tetrangomycin (13)^ and rabelomycin (M).'" 
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OH 

OH O OH O OH O R 
R=H Tetrangomycin (13) 
R=OH Rabelomycin (14) Ochromycin (11) Tetrangulol (12) 

Three methodologies were used to generate the 3-hydroxy group. The first 

methodology featured the silyl group as the precursor for the hydroxyl group. It was 

developed by Krohn." The Diels-Alder reaction of diene 17 (Scheme 2) and a 

naphthaquinone gave the angucycline skeleton. The oxidation of the silyl group produced 

the hydrox group. The diene was made by Michael addition of a silane with cyclohexenone 

The above strategy was used in syntheses of 13 and 14. The synthesis of racemic 

rabelomycin was outlined in Scheme 3." The Diels-Alder reaction of quinone 18 and diene 

19 gave quinone 20. The silyl group was converted to a hydroxyl group by AICI3 cleavage of 

the Si-Si bond followed by H2O2 oxidation in presence of fluoride to give 21. The carbonyl 

group at C-1 was introduced by photooxidation. 

15. 

0 
16 

R=Me, Me. Ph; Me. Me, IMS 

RI, R2 = H, H; H. OTMS; OEt, OTMS 

Scheme 2 

R2 

17 
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Si2M65 

OH o OH O OH OTMS 
19 

812^65 

OH O OH 
21 

OH O OH 
Rabelomycin 

I.AICI3 

TFT 
3. F-, H2O2 

Scheme 3 

Later, the dimethylphenylsilyl group was used. It was converted into a hydroxy} 

group under milder conditions. Krohn'" used the dimethylphenylsilyl group for the synthesis 

of tetrangomycin (Scheme 4). A regioselective Diels-Alder reaction of bromoquinone 22 

with the diene 23 followed by elimination of HBr and the treatment with a Lewis acid 

produced the product 24. Oxidation of 24 generated tetrangomycin. 

Br 

OAc^O 
22 

r ^SiMeaPh 
Y BFaEip 

SIMGoF 

F. HgOg 

OH O 

hv.Oz 

OH O 
Tetrangomycin 

Scheme 4 
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Toshima'^ used also the dimethylphenylsilyl group in a synthesis of urdamycinone B. 

He coupled the olivose 27 with naphthol 26 using trimethylsilyi triflate as the Lewis acid to 

generate a C-glycoside. Removal of the benzyl ethers and air oxidation gave 28. The 

regioselective Diels-Alder reaction of quinone 28 and diene 29 followed by elimination of 

thiophenol and oxidation yielded urdamycinone B (Scheme S). 

A different methodology was developed by Boyd and Sulikowski.''* Starting from (-

)-quinic acid they employed a sequence of reactions analogous to that reported by Steglick'^ 

(Scheme 6). The epoxide resulting from 31 was reduced to a diol. The secondary hydroxyl 

group was mesylated. Reductive fragmentation gave alcohol 32. They prepared the diene 34 

via Michael addition and DDQ oxidation of the silyl enol ether. 

The Diels-Alder adduct 36 was epoxided with dimethyldioxiranto give 37. 

Rearrangement of 37 with TBAF followed by elimination yielded SF2315 A (38) (Scheme 

7).'^ 

OH OBn 
26 

HO OH O T n 
HO OH O 

Urdamycinone (30) 

OH 

Scheme 5 

H0^,,,CH20Ts BnO \,xMe 
Rnrt RnO 
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33 
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34 

OTMS 

35 
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TIPSO 
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OAc O 

OBn 

OH O 
SF 2315A(38) 

Scheme 7 

A similar strategy was also used to complete the first enantioselective synthesis of 

undamycinone B.''* Regioselective Diels-Alder reaction of bromoquinone 39 and diene 35 

followed by the elimination of HBr yielded quinone 40. Oxidation to cis-diol 41 followed by 

deprotection, oxidation, and aromatisation gave undamycinone B (Scheme 8). 

TIPSO 

OTIPS R 
OAc O OAc O 

OAc O 
41 

OH 

'OH y 

AcO-^ 
OH O 

Undamycinone B 

Scheme 8 
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The third route was a biomimetic-type synthesis. Biosynthesis is presumed to occur 

via a hypothetical decaketide (Scheme 9).' Rohr'^ recently presented a folding analysis of 

polyketides in terms of sequential (E)- or (Z)-enoIate. However, it should be mentioned that 

Gould'® recently presented an alternative mechanism for PD 116198 involving a skeletal 

rearrangement. 

reduction 
oxidation 

SR 
•---decarboxylation 

OH 0 OH 

Rabelomycin 

Scheme 9 

The first biomimetic-type synthesis of urdamycinone B was realized by 

Yamaguchi." Starting with ester 42, they prepared the naphthalenediol 44 by successive 

condensation of 42 with acetoacetate dianion 43 and acetate anion. Aldehyde 45 was 

prepared by dealkoxydecarbonylation, base-catalyzed ring closure, alcohol protection, and 

DIBAL reduction. Enolate of 46 reacted with the aldehyde, giving a diketoalcohol which 

spontaneously cyclized with concomitant aromatisation to 47. Deprotection, base-catalyzed 

air oxidation to an anthraquinone, and removal of the dithiane then generated the crucial 

diketone 48. Base-catalyzed cyclization yielded undamycinone B (Scheme 10). 

Krohn^° reported another biomimetic synthesis (Scheme 11). Starting with 

bromoquinone 49, he prepared quinone 51 by alkylation of the benzylic bromide with the 

ketoester 50. The second chain was introduced by a Stille reaction of 52. 

Decarbomethoxylation of 53 under neuU'al conditions followed by the cleavage of the side 

chain and base-catalyzed cyclization gave 54. Compound 54 was oxidized with NMO. 

Phenol 55 was isolated as the major product using 1.2 equivalents of NMO. Phenol 56 was 

the major product using 14 equivalents of NMO. Base-catalyzed cyclization of 55 and 56 

gave tetrangomycin and rabelomycin, respectively. 
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However, angucyclines in which ring A is not aromatic present a great challenge for 

chemical synthesis. The most difficult aspect of the total synthesis of the more complex 

angucyclines such as aquayamycin is the construction of the cw-AB ring junction with diol 

functionality. This motif exhibits a marked propensity towards skeletal rearrangement under 

basic, acidic, and photochemical conditions.'* 

Nicolas and Frank"' first addressed the problem of establishing the two m-hydroxyl 

groups. They used the Bradsher cycloaddition reaction to construct the ring system (Scheme 

12). The iminium salt 57 reacted with enol ether 58 to form the aldehyde 60 via intermediate 

59. The protected enediol 61 was prepared by elimination of the amine. 
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Results and Discussion 

To construct the C-1, C-4a and C-12b functionalities, we focused on the construction 

of the a-hydroxy ketone. In 1989 our group developed the methodology to achieve this goal 

via the keto nitrile cyclization by samarium iodide reduction." Corey^ reported a related 

methodology to prepare a-hydroxy ketones from keto nitriles by zinc and 

chlorotrimethylsilane. 
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Zn, TMSCI 

Both of these methodologies constructed five-member rings. To use these 

methodologies to construct the AB ring junction of aquayamycin, we needed to determine 

whwether the reductive cleavage of a-alkoxy groups (Scheme 13) reported by Molander 

and Rosenfeld^ would interfere. 

O o 

Sml2 
b).2® Zn 

Scheme 13 

We converted tetralone 66 into ketonitrile 67 to determine whether reductive 

cyclization was favored over cleavage of an a-substituent (Scheme 14). Alkylation of 

tetralone 66 with LDA and 4-iodobutyronitrile required the addition of 

hexamethylphosphoric triamide (HMPA) for a reproducible 50% yield of 67. Ketone 68 was 

prepared from 67 in 72% overall yield via oxidation of an enol silyl ether with MCPBA."^ 

Unfortunately, both Smia and Zn/TMSCl gave deoxygenation product 67. No cyclization 

product 69 was isolated. 
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I(CH2)3CN 

a) Zn,TMSCI 
b) Smia 

O CN 

1.LDA;TMSCIf 

2. MCPBA; F 

OMe 

OMe 
no 69 

OH 

Scheme 14 

The next strategy we evaluated was an intramolecular cyclization of an acyl 

carbanion equivalent (Scheme 15). Intermoiecular alkylation of acyl carbanion equivalents 

are well documented, however, only a few intramolecular reactions have been reported."' A 

recent example described by Paquette."® 

OMe 

OMe 71 

,0H 

OMe 

OMe 70 

Scheme 15 

OTBS I).KN(TMS)2 

2).TBAF 

To examine this strategy, we started with tetralone 66. The alkylation of tetralone 66 

with LDA and 5-bromo-l-pentene gave a mixture of mono- and dialkylated products 

(Scheme 16). The yield of the mono-alkylated product 75 was improved to 55% by using 

NaN(TMS)2. bistallation of methoxyl group was accomplished using a three-step reaction 
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sequence involving enol silyl ether formation with LDA and TMSCl, MCPBA oxidation,"® 

fluoride desilylation, and methylation with NaH and Mel in DMF. Oxidation of alkene 75 

with ozone generated an aldehyde. Treatment of the aldehyde with TBDMSCl, Znh, and 

KCN in dry acetonitrile gave 77 in 72% yield."' 

LDA. 

C5H9I 

OMe OMe 
74 

1). LDA, TMSCl 

2). MCPBA 

3). NaH, Mel 

OMe 1)-03J MeaS 

OMe 
76 

2). KCN, TBSCI, 
Znia OMe 

77 

Scheme 16 

Treatment of 77 with LDA at -78 °C yielded nitrile 78 and hydroxy ketone 79 

(Scheme 17). The relative stereochemistry of 78 is tentatively assigned based on the NMR 

spectrum of 78. It contained a methyl resonance at -0.4 ppm. This corresponds to a methyl 

group attached to silicon which has been deshielded by the aromatic ring and would be 

possible only with the OTBS group in an endo-configuration. Treatment of the unpurified 

mixture of 78 and 79 with TBAF yielded ketone 69 in 73% overall yield. The cis-

stereochemistry of the hydroxyl and methoxyl groups was confirmed by x-ray structure 

determination. 

This chemistry provided a convenient approach to the ABC ring system containing a 

selectively protected cis-4a, 12b diol. To fit this strategy to the synthesis of aquayamycin, 

we proposed a retrosynthetic analysis shown in Scheme 18. The regioselective Dials-Alder 

reaction of the ketoquinone 81 had been reported by our group.^" 
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•'"OR 

OMe 
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Scheme 18 

We next started with 83. Tetralone 85 was prepared from 83 by a known procedure 

(Scheme 19).^' Using an aldol reaction, we introduced the side chain.^^ An aldol reaction 

with LDA resulted in recovered starting material. However, the silyl enol ether of 85 reacted 

with aldehyde 86 to give the aldol product." Mesylate elimination then afforded enone 87 

in good yield. 

To selectively reduce the enone double bond, we tried a rhodium-catalyzed reaction, 

but recovered CuH reagent also failed.^' Fortunately, a palladium-meidiated silane 

reduction gave the reduction product 88 (Scheme 20).^® 
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OMe 
88 

Ketone 88 was silylated, oxidized and methlated to make ketone 89 (Scheme 21). 

However, 89 was a mixture of diastereomers. Compound 89 was converted into the 

cyanohydrin 90."' Treatment of 90 with LDA returned recovered starting material. We 

cyanohydrin may be too bulky to react with the hindered carbonyl group. 

OMeO OMeO 

OMe 
88 

1). LDA,TMSCI 

2). MCPBA 

3). NaH, Mel OMe 
89 

OMeO 

1). Osi MegS 
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Scheme 21 
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The smaller thimethylsilyl cyanohydrin was made using TMSCN and Znh (Scheme 

22)?^ This cyanohydrin is difficult to purify. Treatment of 91 with LDA gave a new 

product. From the 'H NMR spectrum, the cyanohydrin proton at 4.5 ppm had disappeared 

and the two aromatic protons at 6.92 ppm and 6.77 ppm had become a singlet at 6.75 ppm. 

Unfortunately, this product decomposed upon treatment with tetrabutylammonium fluoride. 

2). Znia 
TMSCN 

89 91 Decomposed 

Scheme 22 

Conclusion 

We developed an approach to the ABC ring system of aquayamycin. The C-3 

hydroxyl group was introduced by an aldol-enone reaction. With minor changes, the total 

synthesis of aquayamycin might be possible. 

Experiments 

Unless otherwise noted, the materials used in the experiments for this research were 

obtained from commercial suppliers and were used without further purification. THF and 

diethyl ether were distilled from sodium benzophenone ketyl. Benzene, dichloromethane, 

acetonitrile, toluene, diisopropylamine were distilled from calcium hydride. The reactions 

were conducted in a nitrogen atmosphere and the organic extracts were dried with 

magnesium sulfate. The melting point was determined on a Fisher-Johns apparatus and was 

not corrected. Infrared spectra were obtained on a Perkin-Elmer model 1320 

spectrophotometer and nuclear magnetic resonance spectra were determined on a Nicolet 

Magnetics Corporation NMR-1280 Spectrometer. 

All chemical shifts are reported in 5 relative to tetramethylsilane as an internal 

standard. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd 



www.manaraa.com

75 

(doublet of doublets), dt (doublet of triplets), and m (multiplet). The addition of br indicates 

a broadened pattern. 

The glass apparatus were flame-dned and cooled under the steam of nitrogen. Flash 

column chromatography was conducted using Neutral or Basic Aluminium (Brockmann) 

standard grade (150 mesh) from Aldrich Chemical Company and Silica Gel (EM Science 

Kieselgel 60 (mesh 230-400). Thin layer chromatography was performed using EM Science 

Kieselgel F254 prepared plates with a thiclcness of 0.25 mm. High resolution MS was 

obtained from Kratos Model MS-50 spectrometer and low resolution MS was obtained from 

a Finnegan 4023 Mass spectrometer. 

5-Methoxy-2-(3-cyanopropyl)-l-tetralone (67). 

Compound 66 (1.76 g, 10 mmol) in THF (10 mL) at -78 °C was added under nitrogen 

to LDA (12 mmol from 4.5 mL of 2.5 M BuLi and 1.8 mL of diisopropylamine) in THF (50 

mL) solution. This solution was stirred for 1 hour. HMPA (2.7mL, 15 mol) and 4-

iodobutyronitrile (2.4 g, 12 mmol) were added and the resultant solution was stirred 

overnight. Saturated ammonium chloride (20 mL) was added, and the product was extracted 

with ethyl acetate (30 mL x 3), washed with brine (30 mL), and then dried with magnesium 

sulfate. After removal of the solvent, 1.2 g of 67 was obtained from flash column 

chromatography purification (50% yield). 'H NMR (CDCI3,8): 7.62 (d, J = 6 Hz, IH), 7.27 

(t, J =6 Hz, IH), 7.01 (q, J = 6 Hz, IH), 3.86 (s, 3H), 1.6-3.2 (m, 1IH). "C NMR (CDCI3, 

S): 199.8, 156.8, 133.4, 132.8, 127.0, 119.7, 118.9, 114.2, 55.74,46.4,29.0,28.0,23.3, 22.1, 

17.5. IR (neat) cm"': 3003, 2937,2360, 1681, 1582, 1471, 1260. MS m/z (CI-NH3): 243. 

5-Methoxy- 2-hydroxy>2-(3-cyanopropyl)-l>tetralone (68). 

Compound 67 (0.5 g, 2 mmol) in THF (5 mL) at -78°C was added under nitrogen to 

LDA (2.5 mmol) in THF (20 mL) solution. This solution was stirred for 1 hour, then TMSCl 

(0.32 mL, 2.6 mmol) was added. The resultant solution was stirred at -78 °C for 4 hours and 

pentane (50 mL) was added. The solution was warmed to room temperature, washed by pH 

7.00 buffer solution (30 mL), and then dried with magnesium sulfate. After removal of the 

solvent, the oUy residue was dissolved in methylene chloride (30 mL), and cooled in an ice 

bath. MCPBA (68% pure, 0.62 g, 2.5 nmiol) was added to this solution. After the solution 
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was stirred for 30minutes, sodium thiosulfate (10 %, 5 mL) was added. The organic lay was 

separated and washed with sodium bicarbonate (20 mL) and brine (20 mL). After removal of 

the solvent under vacuum, the remaining oil was dissolved in THF (10 mL) and treated with 

HF (48%, 0.5 mL) for 1 hour. Then water (10 mL) was added. The product was extracted 

with ethyl acetate (20 mLx3), and washed with saturated sodium bicarbonate (10 mL) and 

brine (10 mL), and then dried with magnesium sulfate. After removal of the solvent, 0.4g of 

the pure product was obtained after flash column chromatography (72% yield). 'H NMR 

(CDCI3, 5): 7.60 (d, J = 6 Hz, IH), 7.58 (t, J = 6 Hz, IH), 7.07 (d, J = 6 Hz, IH), 3.88 (s, 3H), 

2.9-3.2 (m, IH), 2.6-2.9 (m, IH), 1.6-2.4 (m, 8H). '^C NMR (CDCI3, 8): 201.6, 157.0, 

132.2,130.8, 127.8, 119.4, 119.3, 115.1, 75.1, 55.7, 34.3, 33.5,20.8,19.6, 17.4. IR (neat) 

cm ': 3400, 3021,2360, 1682, 1581, 1260. MS m/z (CI-NH3); 277. 

5-Methoxy-2-(4-pentenyl)-l-tetralone (74) 

Compound 66 (1.76 g, 10 mmol) in THF (10 mL) at -78 "C was added under nitrogen 

to NaN(TMS)2 (IN in THF, 12 mL, 12 mmol) in THF (50 mL) solution. Then this solution 

was stirred for 1 hour, 5-bromo-l-pentene (1.75 g, 12 mmol) was added, and the resultant 

solution was stirred overnight. Saturated ammonium chloride (20 mL) was added, and the 

product was extracted with ethyl acetate (30mL x 3), washed with brine (30 mL), and then 

dried with magnesium sulfate. After removal of the solvent, 1.34 g of 74 were obtained from 

flash column chromatography purification (55 %). 'H NMR (CEXZls, 5): 7.63 (dd, J =6 Hz; 

IHz, IH), 7.25 (t, J = 6 HZ, IH), 6.99 (dd, J = 6 Hz; IHz, IH), 5.7-5.9 (m, IH), 4.9-5.1 (m, 

2H), 3.86 (s, 3H), 3.0-3.1 (m, IH), 2.7-2.8 (m, IH), 2.4-2.5 (m, IH), 1.8-2.2 (m, 5H), 1.3-1.5 

(m,3H). '^C NMR (CDCI3, S): 200.6, 156.8, 138.8, 133.6, 132.9, 126.8, 119.0, 114.6, 

113.9, 55.7,46.96,34.0,28.9,27.6,26.5,21.8. 

2,5-Diinethoxy-2-(4-pentenyl)-l-tetralone(75) 
Compound 74 (0.5 g, 2 nmiol) in THF (5 mL) at -78 "C was added under nitrogen to 

LDA (2.5 mmol) in THF (20 mL) solution. This solution was stirred for 1 hour, then TMSCI 

(0.32 mL, 2.6 mmol) was added. After 4 hours, pentane (50 mL) was added, and the solution 

warmed to room temperature, washed by pH 7.00 buffer solution (30 mL) and brine (30 mL), 

and then dried with magnesium sulfate. After removal the solvent, the oily residue was 
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dissolved in methylene chloride (30 mL), and cooled in an ice bath. MCPBA (68%, 0.62g, 

2.5 mmol) was added to this solution. After 30niinutes, sodium thiosulfate (10 %, 5 mL) was 

added, and the organic layer was separated and washed with brine. After removal of the 

solvent under vacuum, the remaining oil was dissolved in THF (10 mL) and treated with HF 

(48%, 0.5 mL) for 1 hour. Water (10 mL) was then added. The product was extracted with 

ethyl acetate (20 mLx3), washed with saturated sodium bicarbonate (10 mL) and brine (10 

mL), and then dried with magnesium sulfate. After removal of the solvent, 0.47 g of the pure 

product was obtained after flash column chromatography (85% yield) as 5-methoxy-2-

hydroxy-2-(4-pentenyl)-l-tetralone. 'H NMR (CDCh, 5): 7.61 (dd, J = 6 Hz; IHz, IH); 7.30 

(t, J = 6 HZ, IH), 7.04 (dd, J = 6 Hz; 1 Hz, IH), 5.7-5.9 (m, IH), 4.9-5.1 (m, 2H), 3.86 (s, 

3H), 3.0-3.15 (m, IH), 2.65-2.8 (m, IH), 2.3-2.4 (m, IH), 1.9-2.15 (m, 3H), 1.30-1.75 (m, 

4H). '^C NMR (CDCI3, 8): 202.2, 156.9, 138.3, 132.4, 131.2, 127.5, 119.4, 114.8, 114.7, 

75.5,55.7, 35.0, 33.8, 33.3,22.3,20.9. 

NaH (60% in mineral oil, 50 mg) was added under nitrogen to the solution of 

hydroxytetralone in DMF (10 mL). After 30 minutes, Mel (0.4 mL) was added and the 

resultant solution was stirred overnight. Water (20mL) was added, and the product was 

extracted with ethyl acetate (30 mL x3). The organic solution was washed with water (20 

mL x3) and brine (20 mL x3), and then dried with magnesium sulfate. After removal of the 

solvent, 75 (0.49 g) was obtained as oil, which was pure enough for next step. 'H NMR 

(CDCI3,5): 7.65 (dd, J = 6 Hz; IHz, IH), 7.28 (t, J = 6 HZ; IH), 7.01 (dd, J = 6 Hz; 1 Hz, 

IH), 5.7-5.9 (m, IH), 4.9-5.1 (m, 2H), 3.87 (s, 3H), 3.2 (s, 3H), 3.0-3.15 (m, IH), 2.75-2.9 

(m, IH), 2.35-2.45 (m, IH), 2.0-2.1 (m, 3H), 1.4-1.9 (m, 4H). NMR (CDCI3,6): 197.5, 

156.7,138.5,132.9, 132.4, 127.1, 119.6, 114.9, 114.1,79.2, 55.68, 51.3, 34.1, 31.3, 30.6, 

22.2, 19.9. 

2^>Dimethoxy-2-(4*t-butyldiiiiethylsiloxy -4-cyanobutyl)>l-tetralone (76) 
Ozone was bubbled through the solution of 75 (0.3 g 1.1 mmol) in methylene chloride 

(15 mL) at -78 °C until the solution became light blue. Then the solution was decolorized 

with argon for 15minutes. Dimethylsuflde (0.2 mL, 2.7 mmol) was added and the solution 

warmed and stirred for 12 hours. Then the solution was washed with brine (10 mL) and 
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dried with magnesium sulfate. The aldehyde was obtained as oil after removal of the solvent, 

which was pure enough for the next step. 

Znli (10 mg), TBDMSCl (0.23 g, 1.5 mmol) and KCN (0.13 g, 2.0 mmol) were added 

to the solution of the aldehyde in dry acetonitrile (15 mL). The resultant solution was stirred 

overnight. Then water (10 mL) was added to quench the reaction. The products were 

extracted with ethyl acetate (20 mL x3), washed with brine (20 mL), and then dried with 

magnesium sulfate. Removal of the solvent, followed by FCC purification, yielded 0.41 g 76 

in 85% yield. 'H NMR (CDCb, 6): 7.64 (dd, J=6 Hz; IHz, IH), 7.29 (t, J = 6 HZ, IH), 7.03 

(dd, J = 6 Hz; IHz, IH); 4.44 (t, J = 7 Hz, IH), 3.86 (s, 3H), 3.20 (s, 3H), 3.0-3.15 (m, IH), 

2.75-2.9 (m, IH), 2.3-2.5 (m, IH), 1.5-2.1 (m, 7H), 0.9 (two s', 9H), 0.17 (dd) and 0.18 (dd) 

(total 6H). '^C NMR (CDCI3,8): (diastereomers) 197.23, 197.18, 156.71, 132.74, 132.70, 

132.68, 132.37, 132.33, 127.18, 127.11, 120.07, 120.02, 119.58, 119.55, 114.27, 114.26, 

114.19, 78.96,78.92,61.90,61.87,55.69, 51.34,42.98.36.68,36.16, 31.27, 31.22,31.11, 

30.51, 30.44,25.72, 25.63,26.57, 25.36, 19.81, 19.74, 18.68, 18.29, 18.21, 18.09, -5.08, -

5.29,-4.76. MSm/z(CI-NH3):417. 

(c/5)-l, 8a-Dimethoxy-4&-hydroxy-4,6,7,8,9,10,4by 8a-octahydro-5-oxo-phenathrene 

(69) 

LDA (IN, 0.6 mL, 0.6 mol) was added under nitrogen to a solution of 76 (0,2 g, 0.48 

mmol) in THF (10 mL) at -78 °C under nitrogen. The solution was stirred at -78 °C for 3 

hours, then saturated ammonium chloride (10 mL) was added to quench the reaction. The 

product was extracted with ethyl acetate (20 mL x 3), washed with brine, and then dried with 

magnesium sulfate. The cmde intermediate was obtained as light oil after removal of the 

solvent. Tetrabutylammonium fluoride (IN in methylene chloride, 1 mL) was added under 

nitrogen to the solution of the intermediate in methylene chloride (15 mL). After 3 hours the 

reaction was quenched with saturated ammonium chloride (10 mL). The product was 

extracted with ethyl acetate (20 mL x 3), washed with brine, and then dried with magnesium 

sulfate. Removal of the solvent, followed by flash column chromatography purification, 

gave 69 as a white crystal (95 mg, 73% yield). A single crystal was obtained for x-ray 

structure^^ determination from recrystallization in the mixture of methylene chloride and 
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hexanes. 'H NMR (CDCI3, 5): 7.14 (t, J = 6 Hz, IH), 6.77 (dd, J = 6 Hz; 1 Hz, IH), 6.45 (dd, 

J = 6 Hz; I Hz, IH), 4.08 (s, IH, OH, disappeared with DjO), 3.83 (s, 3H), 3.26 (s, 3H), 3.08 

(dd, J = 15 Hz, 6 Hz, IH), 2.3-2.7 (m, 3H), 1.7-2.2 (m, 6H). NMR (CDCI3, 8): 

211.9,157.6, 127.8, 124.3, 119.7, 114.7, 109.6,82.2,81.2,55.4,48.6, 38.2,26.3,24.1,21.8, 

21.4. IR (neat) cm ': 3496, 2942,1717,1585, 1467, 1261, 1091. MS m/z (CI-NH3): 276. 

References 

1. Rohr, J. and Thiericke, R. Nat. Prod. Rep. 1992,9, 103. 

2. Kunstmann, M. P.; Mitscher, J. J. Org. Chem. 1966,31, 2920. 

3. Drautz, H.; Zahner, H.; Rohr, J.; Zeeck, A. J. Antibiot. 1986, 39, 1657. 

4. Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. Tetrahedron, 1970,26, 

5171. 

5. Nagasawa, T.; Fukao, S.; Irie, H.; Yamada, H. J. Antibiot. 1984,37,693. 

6. Nagatsu, T. Ayukawa, S.; Umezawa, J. J. Antibiot. 1968,21, 354. 

7. Omura, S. Tanaka, H.; Oieva, R.; Awaya, J.; Masyra, R.; Tanakam K. J. Antibiot. 1977, 

30,908. 

8. Krohn, K. Rohr, J. Top. Curr. Chem. 1997,118, 127. 

9. Bowie, J. H.and Johnson, A. W. Tetrahedron Lett. 1967, 1449. 

10. Liu, W.; Parker, W. L.; Slusarchyk, D. S.; Greenwood, G. L.; Graham, S. F. and Meyer, 

E. J. Antibiot. 1970,23,437. 

11. Krohn, K.; Khanbabaee, K. Angew. Chem. 1994,106, 100. 

12. Krohn, K.; Khanbabaee, K. LiebigsAnn Chem. 1994,189, 1109. 

13. Matsuo, G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K. J. Chem. Soc. Chem. 

Commun. 1996, 225. 

14. Boyd, V. A.; Sulikowski, G. A. J. Am. Chem. Soc. 1995,117, 8472. 

15. Billen, G.; Scholl, K. U.; Stroech, K. D.; Steglich, W. In : HEJ Alta-ur-Rahman (eds) 

Natural Products Chemistry, Springer, Heidelberg, 1988, vol. 14, p305.. 

16. Kim, K.; Sulikowski, G. A. Angew. Chem. 1995,105,2587. 

17. Rohr, J. J. Org. Chem. 1992,57,5217. 

18. Gould, S. J.; Halley, K. A. J. Am. Chem. Soc. 1991,113, 5029. 



www.manaraa.com

21 

22 

23, 

24. 

25, 

26, 

27, 

28, 

29, 

30, 

31, 

32, 

33, 

34. 

35, 

36. 

37. 

80 

Yamaguchi, M.; Okuma, T.; Horiguchi, A.; Ikeura, C.; Minami, T. J. Org. Chem. 1992, 

57, 1647. 

Krohn, K.; Boker, N.; Florke, U.; Freund, C. J. Org. Chem. 1997,62, 2350. 

Nicolas, T. E.; Franck, R. W. J. Org. Chem. 1995,60,6904. 

Kraus, G. A.; Sy, J. O. J. Org. Chem. 1989,54,77. 

Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983,24,2821. 

Molander, G. A.; Hahn, G. J. Org. Chem. 1986,51, 1136. 

Rosenfeld, R. S.; Gallangher, T. F. J. Am. Chem. Soc. 1955, 77. 4367. 

Brook, A. G.; Macrae, D. M. J. Organmetal. Chem. 1974, 77, C19. 

Albright, J. D. Tetrahedron, 1983,39, 3207. 

Hong, F.; Paquette, L. A. Tetrahedron Lett. 1994,35,9153. 

Rawal, V. H.; Rao, J. A.; Cava, M. P. Tetrahedron Lett. 1985,26. 

Jun, L. Ph.D. Thesis, Iowa State university, 1994. 

Shimizu, T.; Horaguchi, T.; Watanabe, A. Bull. Chem. Soc. Japan, 1973,46, 1772. 

Stembach, D. D.; Hughes, J. W.; Burdi, D. F. /. Org. Chem. 1984,49, 201. 

Mukaiyama, T; Banno, K.; Narasaka, J. Am. Chem. Soc. 1974, 96,7503. 

Ojima, I.; Kogure, T. Organometallics, 1982,1, 1390. 

Semmelhack, M. F.; Stauffer, R. D.; Yamashita, J. Org. Chem. 1977,42, 3180. 

Keinan, E. Pure and Appl. Chem. 1989,61, 1737. 

Deuchert, K.; Hertenstein, U.; Hunig, S.; Wehner, G. Chem. Ber. 1979,112,2045. 



www.manaraa.com

81 

38. X-ray structure of 68: 
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GENERAL CONCLUSION 

Different methodologies were used to achieve the synthesis of natural furan. These 

strategies could be used to construct more complex antitumor antibiotics. A synthesis of 

hibiscone C was achieved in seven steps. Halenaquinone analogs were prepared via Michael 

addition, annulation, and a Diels-Aider reaction. In the final project, we developed 

convenient method to construct the cis- fused BCD ring system in aquayamycin. 
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